

Verde Environmental Consultants

Preliminary Site Assessment Report for Marina Commercial Park, Centre Park Road, Cork

ESB Site Ref: 27
Marina - Trabeg Two 110kV

March 2020

Project Title:	ESB Networks Historic Fluid Filled Cable Loss
	Environmental Assessment
Licence No:	N/A
Project No:	52458
Contract No:	52458 Stage 1
Report Ref:	Stage 1 Preliminary Site Assessment Report for Marina
	Commercial Park, Centre Park Road, Cork. ESB Ref: 27 Marina - Trabeg Two 110kV
Status:	Final
Client:	ESB Networks
Client Details:	ESB Networks
	Engineering \& Major Projects
	One Dublin Airport Central
	Dublin Airport
	Cloghran
	Co Dublin
	Verde Environmental Consultants Ltd, E7 Network
	Enterprise Park, Kilcoole, Co Wicklow, A63 KV04.

Document Production/Approval Record

	Name	Signature	Date	Position	\% Input
Prepared by (consultant)				Senior	
Contributed by (consultant)			$09 / 07 / 2019$	Hydrogeologist	60
Approved by (consultant)			$10 / 07 / 2019$	Risk Assessor Specialist	20

LIMITATION

This report represents the results of a site inspection and desk study research conducted at the above referenced site. Best practice was followed at all times and within the limitations stated. This report is the property of Verde Environmental Consultants Limited (Verde) and cannot be used, copied or given to any third party without the explicit prior approval or agreement of Verde.

This report is intended as a preliminary stage assessment of the site in question and, as such, all assessments and analysis of the environmental aspects of the site, whilst based of the best-available data and information, are theoretical and conservative in nature. Any risks identified within this report are entirely potential in nature and based on the most-conservative risk analysis scenario and the available information. This is inkeeping with best practice guidelines and does not necessarily reflect the actual environmental scenario on site. Further environmental information, as it becomes available, would likely change the assessments and analysis contained within this report.

TABLE OF CONTENTS

Section Page No
EXECUTIVE SUMMARY III

1. INTRODUCTION 1
1.1. PROJECT CONTRACTUAL BASIS AND PERSONNEL INVOLVED 1
1.2. BACKGROUND INFORMATION 1
1.3. PROJECT OBJECTIVES 1
1.4. SCOPE OF WORKS 2
1.5. SCOPE OF ANALYSIS AND CONCLUSIONS 2
2. SOURCE AUDIT FINDINGS - PRODUCTION \& OPERATIONAL HISTORY 3
2.1. CURRENT SITE OPERATIONS 3
2.2. PREVIOUS SITE OPERATIONS 3
2.3. CHEMICALS OF POTENTIAL CONCERN (COPC) 3
3. SITE ENVIRONMENTAL SETTING 6
3.1. GENERAL INTRODUCTION 6
3.2. SITE HISTORY 7
3.3 REGIONAL GEOLOGY AND HYDROGEOLOGY 8
3.4 SITE GEOLOGY AND HYDROGEOLOGY 11
3.5 SUMMARY OF PREVIOUS SITE SAMPLING AND MONITORING DATA 13
4 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 14
4.1 PRELIMINARY QUALITATIVE RISK ASSESSMENT (PQRA) 14
4.2 OUTLINE SITE CONCEPTUAL MODEL 14
$4.3 \quad$ POLLUTANT LINKAGE ASSESSMENT 17
4.4 SUMMARY OF PRELIMINARY QUANTITATIVE RISK ASSESSMENT 25
4.5 SUMMARY AND CONCLUSIONS 25
5 REFERENCES 28

FIGURES

Figure 1
Site Location Plan
Figure 2
Figure 3
Figure 4
Location of Sensitive Receptors with Indicative Groundwater Flow Direction Conceptual Site Model (CSM) A-A ${ }^{1}$

Preliminary Conceptual Site Model (Site 27)

APPENDICES

Appendix A	ESB Site Layout Plan with Indicative Cable Fluid Leakage Location
Appendix B	Desk Study Maps
Appendix C	Site Photographs
Appendix D	MSDS for COPC
Appendix E	Water Framework Directive River and Groundwater Body Maps
Appendix F	Historic Geotechnical Reports
Appendix G	Marina Generation Station Environmental Incident Report Nov 2012
Appendix H	Irish Water Risk Assessment Correspondence

EXECUTIVE SUMMARY

This preliminary environmental site assessment consists of a review of the potential environmental impact associated with a hydrocarbon leak from a power cable located in the Marina Commercial Park on Centre Park Road, Cork (ESB Ref: 27 Marina - Trabeg Two). There was an approximate volume of 773 litres of cable fluid consisting of linear alkyl benzene (LAB) mixed with Mineral Oil (MO) released from the cable at leak point. The leak occurred over an unknown period of time and was repaired in November 2012. An environmental incident report, associated with the ESB's Marina Generation Station, states that the leak occurred as a result of a digger-strike on the cable during excavation works. The leaked fluid was reportedly contained within the concrete trench of the cable route and subsequently pumped out to barrels for appropriate disposal. As a result of the containment, recovery, and remediation efforts at the time of the leak, the majority of the leaked cable fluid was not released to the environment and was sent for appropriate waste disposal.

This report is intended as a preliminary stage assessment of the site in question and, as such, all assessments and analysis of the environmental aspects of the site, whilst based of the best-available data and information, are theoretical and conservative in nature. Any risks identified within this report are entirely potential in nature and based on the most-conservative risk analysis scenario and the available information. This is inkeeping with best practice guidelines and does not necessarily reflect the actual environmental scenario on site. Further environmental information, as it becomes available, would likely change the assessments and analysis contained within this report.

The known leak point is located approximately 15 m north of the Centre Park Road, within the confines of the Marina ESB Facility/Campus in the Marina Commercial Park. The primary land use in the area is mixed commercial and industrial with small areas of open space defined throughout the surroundings; typically, along roadsides and near drainage channels. The nearest residential property is located 380 m southeast of the leak point. There is evidence of abundant site services in the roadway, the grass verge and concrete footpaths with manhole covers and service kiosks. There is no physical evidence of hydrocarbon contamination on the surface in terms of oil odours/staining or impact to vegetation. The land in the area is zoned primarily for residential use with small areas of public open space. Site 27 is located within the boundary of the Marina ESB generation facility, which is an IE-Licensed site (ID: P0578-03).

The cable section in question is underlain by a large, regionally important gravel aquifer (Rg), as classified by the GSI. This aquifer represents the primary environmental receptor for any contaminants. This aquifer is thought to be highly permeable and more than 10 m thick (up to 50 m locally).

The cable section in question is underlain by several bedrock formations. The northern section of the site is underlain by a locally important, moderately productive (LI), bedrock aquifer of the Cuskinny Member of the Kinsale Formation. The central section of the site, and location of the leak point, is underlain by the locally important bedrock aquifer (LI), Ballysteen Formation. The southern section of the site is underlain by Waulsortian Limestones which are comprised a regionally important, karstified, diffuse production, bedrock aquifer (Rk).

The groundwater vulnerability in the northern and central areas of the site is classified as Moderate, suggesting some combination of moderate-low permeability soils and subsoils of 5-10m in thickness. The groundwater vulnerability in the southern-most section of the site is classified as High, suggesting that the area is underlain by some combination of higher permeability soils of lesser thickness. Moderately permeable Made Ground subsoils are mapped across the site length.

The nearest surface watercourses are represented by several drainage channels in the Marina Commercial Park area. A drainage channel runs along the south side of the Centre Park Road eastward towards the Atlantic Pond and the Lee Estuary. Another drainage channel is located at the southern end of the cable section, which
also flows towards the Atlantic Pond which then drains into the Lee Estuary. There are also culverted drains/sewers on the north and south sides of the Centre Park Road, at the location of the leak point, which drain eastward into the drainage channels an onwards into the Atlantic Pond and Lee Estuary. These may represent a potential hydrological pathway between the leak site and downgradient, environmental receptors.

At the time of reporting, Irish Water have examined all available drinking water quality sample data and have concluded that there is no evidence that COPCs from the leak site have infiltrated the local drinking water supply. This evaluation is based on a review of all samples taken from customer-points, between 2014 and 2019; which showed no evidence that the COPCs (PAHs and Benzenes) were present in the water supply at levels above drinking water standards (PAHs: $0.1 \mu \mathrm{~g} / \mathrm{L}$; Benzene: $1.0 \mu \mathrm{~g} / \mathrm{L}$). These results (which are from samples taken at the customer tap) would not indicate that leaks from oil filled cables have contaminated the drinking water supply for these areas, or at least to an extent where any contamination arising has resulted in a breach of the parametric value for PAHs and Benzene (Appendix H).

Based on the known cable leak point, chemical of potential concern (COPC) fate and transport and hydrogeological desk study information the CSM has the following initial key findings for human health and environmental risks;

There is a Low risk posed by LAB and MO from contact with suspected contamination in the soil and groundwater through;

- direct dermal/inhalation and ingestion contact to residents or other building users;
- dermal/inhalation and ingestion pathways to construction workers, which can be managed by appropriate use of PPE and H\&S procedures;
- ingestion contact with suspected contamination in the soil and groundwater through permeation of contamination through plastic water pipes or through low-pressure infiltration of possible soil contamination into water pipes via nearby breaks or leaks;
- hydrocarbon vapours in preferential pathways such as services ducts to nearby building users;
- Leaching to shallow groundwater given the contaminant properties of low mobility and high sorption to soil, with shallow groundwater unlikely to be a viable groundwater resource in the commercial urban and tidally influenced setting;
- hydrocarbon migration downwards to the underlying aquifer given the possible connection to shallow groundwater through shallow rock and gravels in the area indicated by the moderate to high vulnerability. Lower risk due to absence of groundwater users downgradient, and the likelihood of saline interaction with groundwater locally.
hydrocarbon migration to the Atlantic Pond and Lee Estuary given the existence of a potential hydrogeological pathway between the leak site and the local drainage channels and the Atlantic Pond downstream.
It should be noted that the report contained within Appendix G states that the majority of the leaked fluid was recovered at the time of the leak and, as such, the risks associated with the leak have been assessed with this consideration.

Figure 3 - Conceptual Site Model

1. INTRODUCTION

1.1. PROJECT CONTRACTUAL BASIS AND PERSONNEL INVOLVED

Verde Environmental Consultants, (Verde) was commissioned by ESB Engineering \& Major Projects to undertake Preliminary Risk Assessments at several locations where there were leaks of cable fluids. This report focuses on a hydrocarbon leak from a 110 kV power cable in the Marina Commercial Park on Centre Park Road, Cork (ESB Ref: 27 Marina - Trabeg Two).

A site visit was undertaken by a Verde Hydrogeologist on $4^{\text {th }}$ July 2019 to examine the area of the known cable leak point in relation to any observed evidence of contamination and surrounding land uses and sensitive human health and environmental receptors.

A site location map for the leak point is presented in Figure 1 with a detailed map on the cable route and leak location presented in an ESB supplied map in Appendix A.

1.2. BACKGROUND INFORMATION

The ESB cable fluid acts as an electrical insulator and aids the conduction of heat away from the conductor allowing the cable to be run more efficiently. Fluid filled cables are largely located in urban/suburban areas and so are particularly vulnerable to third party interference or damage. Over time a cable can develop leaks due to corrosion / fracture/ defects in the cable sheath and in joints and terminations. When such leaks occur, there is potential for pollution to occur to surface water, groundwater, soils and ecology.

This preliminary environmental site assessment consists of a review of the potential environmental impact associated with a hydrocarbon leak from a power cable in the Marina Commercial Park on Centre Park Road, Cork (ESB Ref: 27 Marina - Trabeg Two).

There was an approximate volume of 773 litres (I) of cable fluid consisting of linear alkyl benzene (LAB) mixed with Mineral Oil (MO) released from the cable at leak point. The leak is reported to have occurred on the morning of $22^{\text {nd }}$ November 2012 and was repaired later the same day, after immediate containment, patching, and recovery works.. An environmental incident report (Appendix G), associated with the ESB's Marina Generation Station, states that the leak occurred as a result of a digger-strike on the cable during $3^{\text {rd }}$ party excavation works. The leaked fluid was reportedly contained within the concrete trench of the cable route and subsequently pumped out to barrels for appropriate disposal. During the works, additional "top-up fluid" was added to the cable route to maintain the cable functionality; the quantity of this added fluid is not known but any fluid that was released from the leak point during works was captured and pumped to recovery barrels for disposal. The EPA was notified of the leak event at the time and, following the containment and remediation actions of ESB, no further queries or clarification were submitted by the agency.

Details on the physical and chemical aspects of the hydrocarbon products used as Insulating Fluids in a cable are discussed in Section 2.3 below.

1.3. PROJECT OBJECTIVES

The project objective was to determine the potential risks to human health and the environment at the leak locations and potential areas of impact. As requested by ESB, a risk-based approach has been applied to this assessment. This risk based approach is also recommended in the best practice documents produced by the EPA on Management of Contaminated Land \& Groundwater at EPA

Licenced Sites published in 2013. Site 27 is located within the boundary of the Marina ESB generation facility, which is an IE-Licensed site (ID: P0578-03). The approach presented is consistent with UK and mainland European best-practice guidance in the assessment and management of potentially contaminated land. It is therefore considered to be a robust basis for the assessment of the subject site.

This report has been prepared in accordance with the EPA guideline reporting template for Preliminary Site Assessments under the EPA Contaminated Land \& Groundwater Risk Assessment Methodology.

1.4. SCOPE OF WORKS

In order to complete the assessment and meet the objective of the brief the following scope of works was completed:

- A desk study review of available historical, geological and hydrogeological and environmental sensitivity information for the site. The desk study includes an assessment of historical land uses. Information on site utility services from various providers was examined together with detailed information on the cable route with a known leak point on the ESB cable, such as cable ends or joints.
- Site walkover to undertake a detailed site inspection to establish as much information as possible regarding site operations, activities, observed evidence of contamination and land use to include detailed site notes and photographs.
- Prepare a report in accordance with best practice guidance, in that the information gathered will be used to develop a preliminary conceptual model for the site.

1.5. SCOPE OF ANALYSIS AND CONCLUSIONS

This report is intended as a preliminary stage assessment of the site in question and, as such, all assessments and analysis of the environmental aspects of the site, whilst based of the best-available data and information, are theoretical and conservative in nature. Any risks identified within this report are entirely potential in nature and based on the most-conservative risk analysis scenario and the available information. This is in-keeping with best practice guidelines and does not necessarily reflect the actual environmental scenario on site. Further environmental information, as it becomes available, would likely change the assessments and analysis contained within this report.

As such, the reader is encouraged to view the findings, conclusions and recommendations contained within this report as the most-conservative, theoretically possible environmental scenario; and not necessarily the actual scenario currently persisting on the site question.

2. SOURCE AUDIT FINDINGS - PRODUCTION \& OPERATIONAL HISTORY

2.1. CURRENT SITE OPERATIONS

The known leak point is located on the northern side of the Centre Park Road, at the entrance to the ESB's Marina substation and former generation facility as presented in the site photographs in Appendix C.

The leak is understood to have occurred in November 2012, as a result of a cable strike during excavations, and was repaired later in November 2012 as reported in the 2012 Annual Environmental Report (AER) provided to the EPA by the ESB as part of the Marina Generating Station's IPCC license conditions (ID: P0578-03).

There is no physical evidence of hydrocarbon contamination on the surface in terms of oil odours/staining or impact to vegetation with healthy looking trees and hedges.

An estimated quantity of 773 litres of linear alkyl benzene/mineral oil mix is understood to have been released from the cable. No evidence of hydrocarbon contamination on the surface in terms of odours or staining or impact to vegetation was observed.

The known presence of permeable made ground around the power cable together with the presence of other underground services along the roadway indicates there is potential for preferential lateral migration from the leak point along the underground services routes.

2.2. PREVIOUS SITE OPERATIONS

This area of Cork was used as the "Town Park" and racing grounds up to some point in the early 20th century as shown in the historical desk study maps in Appendix B. There is a notable change in land use seen between the 25 -inch maps (1883-1913) and the Cassini 6 -Inch Maps (likely 1940's). Between these periods, the land use changed from the largely recreational and open-space parkland of the "City Park" and racecourse to a commercial and industrial area containing industries such as the Ford and Dunlop Works (automotive and tyre manufacturers).

The ESB power cable was installed in the area in 1972. Further details on the site history are presented in section 3.2.

2.3. CHEMICALS OF POTENTIAL CONCERN (COPC)

The fluid in the electrical cables is a mixture of two components Mineral Oil and Linear Alkyl Benzenes (T3788). Material Safety Data Sheets (MSDS) for the fluids are included in Appendix D and further detail on their physical, fate and transport and toxicological properties provided below.

2.3.1 Linear Alkyl Benzenes

Linear Alkyl Benzene is a benzene compound with a side alkyl chain of 10-13 carbon atoms in length. The following presents relevant information on its Fate and Transport in the environment.

- Iow solubility ($0.041 \mathrm{mg} / \mathrm{l})$, which means it doesn't mix with water easily;
- low to moderate volatility with the MSDS providing that the compound should not present an inhalation hazard under ambient conditions and that exposure to vapour or oil mists may
irritate the mucous membranes and cause dizziness, headaches and nausea;
- Strongly absorbs to soil and combined with its low solubility and high viscosity means it generally has low mobility in the water environment;
- Its preference in soil will be to remain as free product or sorb to soil with a smaller proportion in the vapour phase;
- It will form a Light Non-Aqueous Phase Liquid (LNAPL) on water;
- It is readily biodegradable under aerobic conditions in both water and soil, with a half-life in soils of 15.3 days and less than 28 days in water. Half-life is the time required for a quantity to reduce to half of its initial value (REACH database);
- Does not bio accumulate;
- The Predicted No Effect Concentration (PNEC) is the concentration of a chemical which marks the limit below which no adverse effects of exposure in an ecosystem are measured. LAB is toxic to the water environment with a PNEC aqua (freshwater) of $0.001 \mathrm{mg} / \mathrm{I}$: PNEC soil terrestrial organisms of $0.329 \mathrm{mg} / \mathrm{kg}$ and PNEC sediment of $1.65 \mathrm{mg} / \mathrm{kg}$ for freshwater sediment and $0.165 \mathrm{mg} / \mathrm{kg}$ for marine sediments (REACH database).

2.3.1 Mineral Oil

In scientific terminology, the term mineral oil tends to be nonspecific in that it can refer to a substance which contains varying substances depending on its manufacture process.

Mineral oils are manufactured from petroleum with about 10-25\% comprising of additives which can include antioxidants, metal deactivators, detergents, dispersants, corrosion inhibitor etc. Their composition will also have changed over time and in the context of cable fluid will vary according to when cables were installed. In summary, the following characteristics have been identified:

- Physical properties can vary widely being defined by the crude oil source, carbon number distribution, boiling range and viscosity.
- Mineral oils are refined from petroleum crude oils, and are complex mixtures of straight- and branched chain paraffinic, naphthenic, and aromatic hydrocarbons with 15 or more carbons and boiling points in the range of $300^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$.
- Are insoluble in water and alcohol, but soluble in benzene, chloroform, ether, carbon disulfide and petroleum ether. They have ranging viscosities.
- Mineral oils from paraffinic crude oils are characterised by high wax content, high natural viscosity index, and relatively low aromatic hydrocarbon content. Naphthenic crude oils are generally low in wax content and relatively high in cyclo-paraffins and aromatic hydrocarbons. All crude oils contain some polycyclic aromatic hydrocarbons, and the proportions and types of these compounds in the finished mineral oils are determined primarily by the refining process.
- In the past, many mineral oils were only mildly refined and contained significant levels of polycyclic aromatic hydrocarbons (PAHs). Acid treatment was initially used to remove PAHs and other impurities and to improve the technical properties of the finished oils. In recent
decades, acid treatment has largely been replaced by extensive refining with solvent extraction and/or hydro-treatment, which has further reduced the level of PAHs and other contaminants.
- In conclusion to the above, due to mineral oils likely varying composition, its physical, fate and transport and toxicological properties are best determined through consideration of the TPH CWG framework which characterises petroleum hydrocarbons according to the number of carbons. For a mineral oil, carbon fractions of C_{15} and above are relevant and PAHs. Additives may also be wide ranging and so their characteristics can be determined by the presence of analysed volatile and semi-volatile organic compounds.
- Mineral oil as represented by TPH hydrocarbon fractions of C_{15} and greater have a very low mobility and low degradation half-lives. They therefore have the potential to persist in the environment.
- The longer carbon chain lengths also mean that mineral oil will have a relatively low volatility, with carbon fractions of greater than C_{16} not being considered to be volatile.

The MSDS for Masse 106 (the Mineral Oil leaked from the cable) has identified that the product if it enters soil will be absorbed to soil particles and so will not be mobile. It has the potential to bio-accumulate. The MSDS also identifies that the product is expected to be nontoxic to aquatic organisms and that toxicologically it is not toxic and not carcinogenic. However more recently studies such as those for TPH CWG, have published health criteria values for carbon range C_{16-35} and along with potential additives potential impacts to human health and the environment will need to be considered.

3. SITE ENVIRONMENTAL SETTING

3.1. GENERAL INTRODUCTION

The cable of interest and leak site is located 80 m from the Marina substation facility within the ESB's Marina Commercial Park facility on the Centre Park Road. The main land use in the area is commercial with some roadside green spaces and buffer zones. The nearest residential property is located 380 m to the southeast of the leak point. The cable route runs north to south from the Marina Commercial Park in the North, across the Centre Park Road and south as far as the southern boundary of the commercial zone (as defined by a drainage channel), 60 m north of Monaghan Road. The northern section of the cable, which runs through the Marina Commercial Park, is adjacent to several commercial premises including a furniture outlet, architecture office, fitness gym and crash repair facility.

The nearest surface watercourses were observed during a site walkover on 30th of July 2019. Several drainage channels were observed in the site area. A drainage channel runs along the south side of the Centre Park Road, which appears to serve as an artificial storm water drainage channel that flows to the east towards the Atlantic Pond and the Lee Estuary. Another drainage channel is located at the southern end of the cable section, which also flows towards the Atlantic Pong which then drains into the Lee Estuary. These drainage channels were seen, during the walkover, to be very low flow systems with no visible signs of contamination as seen in Appendix C.

The River Lee/ Lee Estuary is located 300 m to the north of the leak point and 120 m north of the northernmost section of cable this report is concerning. Topographic data from the GSI (LiDAR) and EPA (contours) show that the Marina Commercial Park is generally flat with sea level being defined by the quayside wall to the north of the commercial park. The ground level begins to slightly increase southwards from the southern boundary of the commercial estate

The Lower Lee Estuary connects to the Cork Harbour Special Protection Area (SPA) (Site Code: 4030). This SPA is located approximately 3.0 km east of the nearest point of the Lower Lee Estuary to the leak location. Cork Harbour is designated as a SPA for its role in supporting a number of bird and invertebrate species. The two drainage channels located 200 m south and 250 m east of the leak point, both drain eastwards into the Atlantic Pond and, subsequently, the Lee Estuary, approximately 1 km east of the leak point.

The cable section in question is underlain by a large, regionally important gravel aquifer (Rg), as classified by the GSI, extending from the lower marina quays, as far as the Upper Lee Valley, approximately 15 km to the west. This aquifer represents the primary environmental receptor for any contaminants. Typically, the aquifer types support regionally important water abstractions such as large public water supplies with typically excellent yields of $>400 \mathrm{~m} 3$ /day. This aquifer is thought to be highly permeable, more than 10 m thick (up to 50 m locally) and covers an area of 11.58 km 2 ; comprising the majority of the Lee Valley. Groundwater flow in this aquifer is typified by intergranular flow through relatively uniform gravel pack. The groundwater gradient in this part of the aquifer is relatively low, with both the topography and water table being nearly flat. There is a generally strong interaction between gravel aquifers and surface water with a vice-versa relationship of discharge directions between the two depending on water levels and recharge.

The groundwater body in this area is described in the Water Framework Directive the "CorkCity2" groundwater body (WFD ID: IE_SW_G_031), which covers the majority of the Lee Valley and corresponds to the Lee Valley Gravel aquifer. This groundwater body has been assigned "Good" overall status and has also been classed as being "At Risk" of deteriorating in the future, as presented in the Water Framework Directive River Body report in Appendix E.

There are no known groundwater wells within 1 km of the site; however, several boreholes (geotechnical) are recorded in the GSI well database within 1 km of the leak point. A cluster of boreholes are located approximately 750 m to the south of the leak point, in Ballintemple, whilst another cluster is recorded 800 m to the west in the location of the Marina Filling Station on Victoria Road. The database indicates that both these clusters of boreholes are related to geotechnical investigations and are not thought to be producing groundwater wells.

3.2. SITE HISTORY

Primary sources used to research the history of the site included available extracts from historical Ordnance Survey Ireland (OSI) maps, aerial photographs and planning information from Myplan.ie.

The maps consulted include the OSI 6-inch historic maps from 1837 to 1842 , the OSI 25 -inch historical maps surveyed between 1888 and 1913 and the OSI 6-inch Cassini map surveyed in early 20th century. Table 3.1 below gives further details of the site history and the land use of the surrounding area.

Table 3.1 - Site History

History	National Monuments Service: There are several monuments and listed structures located within 1 km of the site according to the National Monument Service. The closest of these are two souterrains recorded on the Blackrock Road and Boreenmanna Road, 650 m and 800 m to the southeast of the site respectively. Also, within 1km of the site are several other national monuments, most of which are various churches and house on the north side of the Lee Estuary. Within 1km of the site, there are numerous listed structures designated on the National Inventory of Architectural Heritage (NIAH) which include a wide range of iconic, distinct and historical structures.
Historic Mapping: OSI 6 inch map (Black and White) (1837-1842): From this map it appears that the area of the wider Marina Commercial Park and the now- developed Cork docklands, comprised a large greenspace called City Park. This area appears to have been a large, open parkland likely resulting from drained estuary lands. Contained within the park, a large racetrack for horses; with associated grandstands to the southwest, training tracks and access routes. Approximately 1km to the southwest of the site, in the current location of Gas Network Ireland's HQ; a gas works site is shown on the map. These maps show several "Gasometers" or large gas holding tanks, tar tanks and other handling infrastructure. The boundary of the Lee Estuary appears to be relatively natural in these maps, with no artificial embankment, railway or boat ramps visible. It is likely that the Lee Estuary in these maps was generally unmodified and narrower.	

	Park still in place and no evidence of commercial or industrial activity in the site area. Several Passage railway which follows the southern boundary of the City Park, along part of what is no Monahan's Road. A slightly older OSi map from 1869 shows the railway following north of the City Park, along the Marina Walk area. It is possible the railway was reconstructed to the south to accommodate the development of the Marina Commercial area. Also noted, is the modification of the estuary boundary, with a wharf and associated landing places recorded. The position of the wharf resembles that of the modern day quay.
Cassini 6 inch (1830-1930): This map series shows a marked change in the area from recreational and greenspace to industrial and commercial development. The City Park has been replaced with several large industrial premises including; the Ford Works and Dunlop Works, both of which were large automotive industries. The Centre Park Road is noted in this map as well as several additional drainage channels, likely installed to dewater and stabilise the former parkland for commercial use. Considering the level of development seen in this map series, it is likely that the map represents a later edition of the Cassini 6-inch mapping series; possibly in the early 20th century. The ESB power cable is reported to have been laid in the area in the 1972.	
Aerial Photos	Aerial Photo 1995: The area is similar to that of present day with the Marina Commercial Park and associated warehouses, depots and Power Station visible. The road layout and position of commercial and nearby residential properties remains largely the same as present times. The western tank farm on the south side of the Centre Park Road appears to still be in use, with the tanks and berms in place. Also notable, is the absence of the newer Marina substation unit within the ESB Marina facility. Aerial Photo 2000: The road layout, positions of residential and commercial properties remains the same as the previous image. The notable change is that the gas works site to the southwest of the Marina Commercial Park, appears to have been decommissioned; and the development of the current office building was underway.
Aerial Photo 2005:	
The road layout, positions of residential and commercial properties remains the same as the	
previous image. The lot to the immediate east of the Marin Power Station shows evidence of	
stockpiling of coal. The purpose and use of this coal is not certain but it is not thought that	
coal was being used as fuel in the station at this point and it is more likely that the stockpile	
relates to local coal suppliers in the area	

3.3 REGIONAL GEOLOGY AND HYDROGEOLOGY

The cable section in question runs for a length of approximately 450 m over the boundary of several geological formations; which is oriented east west, thus dividing the ground underlying cable section into a northern, central and southern area as illustrated in Appendix B.

The following information sources were consulted as part of this desk based research and the relevant information has been compiled in Table 3.2 below.

```
- Cork City Council (Planning and Environment Sections)
- Ordnance Survey Ireland (historic map series)
- National Monuments Service (protected structures)
- Dept. of the Environment, Community and Local Government
- Geological Survey of Ireland
- Environmental Protection Agency data bases
- National Parks and Wildlife Services
- Office of Public Works (flood maps)
```

Table 3.2 - Site Physical Setting

Feature	\quad Details \& Comments
Topography	$\begin{array}{l}\text { The site is overall, generally flat with a very gently slope to the north and northeast towards } \\ \text { the nearby Lee Estuary. The site occupies a historically reclaimed section of tidal estuary and } \\ \text { is largely artificially surfaced. Topographic data from the GSI (LiDAR) and EPA (contours) show } \\ \text { that the Marina Commercial Park is generally flat with sea level being defined by the quayside } \\ \text { wall to the north of the commercial park. To the south, the ground level begins to slightly } \\ \text { increase southwards from the southern boundary of the commercial estate towards Blackrock } \\ \text { from 5mOD to 25mOD. }\end{array}$
Geology	$\begin{array}{l}\text { Overburden: } \\ \text { The GSI and EPA databases describe the soils and subsoils at the site as Made Ground. } \\ \text { Geotechnical reports from within the Marina Commercial Park, show approximately 3-4m of } \\ \text { Made Ground and 3-5m of silt and clay which is underlain by up to 50m of sand and gravel } \\ \text { known as the Lee Valley Gravels. }\end{array}$
$\begin{array}{l}\text { Solid Geology: } \\ \text { The cable section in question runs north to south across several geological formation } \\ \text { boundaries which comprise the northern limb of the Cork geological syncline. The formations } \\ \text { underlying the site, generally dip at a high angle (70-80) to the south. The site is also located } \\ \text { on the southern side of the Lee River Valley, and as such, bedrock shallows rapidly to the } \\ \text { south, with outcropping bedrock recorded 375m to the south of the leak point. }\end{array}$	
Hydrogeology	$\begin{array}{l}\text { The northern section of the site is underlain by the flaser bedded sandstones and mudstones } \\ \text { of the Cuskinny Member of the Kinsale Formation. The central section of the site, and location } \\ \text { of the leak point, is underlain by the dark muddy limestones of the Ballysteen Formation. The } \\ \text { southern section of the site is underlain by Waulsortian Limestones which are comprised of } \\ \text { massive unbedded limestones (typically fine-grained micrites). } \\ \text { According to the GSI the Lee Valley Gravels, which are up to the 50m thick and underlie the } \\ \text { entirety of the site, represent a regionally important gravel aquifer (Rg). These gravels extend } \\ \text { from the lower marina quays, as far as the Upper Lee Valley, approximately 15km to the west. } \\ \text { This aquifer represents the primary environmental receptor for any contaminants. Typically, } \\ \text { the aquifer types support regionally important water abstractions such as large public water } \\ \text { supplies with typically excellent yields of >400m }\end{array}$
permeable, more than 10m thick (up to 50m aquifer is thought to be highly	
comprising the majority of the Lee Valley.	
Underlying the Lee Valley Gravels, at an unknown depth, are several bedrock aquifers. The covers an area of 11.58km²;	

	northern section of the site is underlain by a locally important, moderately productive (LI), bedrock aquifer of the Cuskinny Member of the Kinsale Formation. The central section of the site, and location of the leak point, is underlain by the locally important bedrock aquifer (LI), composed of the Ballysteen Formation. The southern section of the site is underlain by Waulsortian Limestones which represent a regionally important, karstified, diffuse production, bedrock aquifer (Rk). Vulnerability: The groundwater vulnerability in the northern and central areas of the site is classified as Moderate, suggesting some combination of moderate-low permeability soils and subsoils of $5-10 \mathrm{~m}$ in thickness. The groundwater vulnerability in the southern-most section of the site is classified as High, reflecting the shallowing of bedrock to surface and the thinning of overlying, less-permeable silt and clay subsoils. Geological Survey of Ireland and Teagasc soil and subsoil maps show that the entire length of the cable section is classed as moderately permeable Made Ground deposits. The presence of Waulsortian Limestone in the southern areas of the site may represent an additional risk to groundwater due to the tendency of such bedrock to host karstic features.
	Groundwater Body: The groundwater body in this area is described in the Water Framework Directive as the Cork_City_2 groundwater body (WFD ID: IE_SW_G_031) which covers the majority of the Lee Valley and corresponds to the Lee Valley Gravel aquifer. This groundwater body has been assigned "Good" overall status and has also been classed as being "At Risk" of deteriorating in the future, as presented in the Water Framework Directive River Body report in Appendix E.
	Well Search: There are no known groundwater wells within 1 km of the site. Several boreholes (geotechnical) are recorded in the GSI well database within 1 km of the leak point. A cluster of boreholes are located approximately 750 m to the south of the leak point, in Ballintemple, whilst another cluster is recorded 800 m to the west in the location of the Marina Filling Station on Victoria Road. The database indicates that these clusters of boreholes are related to geotechnical investigations and are not thought to be producing groundwater wells. It is also thought that there are a series of groundwater monitoring wells present on the ESB's Marina generation facility; as part of its EPA-licenced activities and environmental obligations. The locations, depths and condition of these wells, was not available at the time of writing this report.
Hydrology	Surface Water Courses/Abstractions: The nearest surface watercourses were observed in the Marina area during a site walkover on $30^{\text {th }}$ of July 2019. Several drainage channels were observed in the area of the proposed site. A drainage channel runs along the south side of the Centre Park Road, which appears to serve as an artificial storm water drainage channel that flows to the east towards the Atlantic Pond and the Lee Estuary. Another drainage channel is located at the southern end of the cable section, which also flows towards the Atlantic Pong which then drains into the Lee Estuary. There are also culverted drains/sewers on the north and south sides of the Centre Park Road, at the location of the leak point, which drain eastward into the drainage channels an onwards into the Atlantic Pond and Lee Estuary. These drainage channels were seen, during the walkover, to be very low flow systems with no visible signs of contamination as seen in Appendix C. The River Lee/ Lee Estuary is located 300 m to the north of the leak point with the northernmost section of cable being 120 m from

	the waterbody.
Protected Areas	Cork Harbour Special Protection Area The closest protected area to the site is the Cork Harbour Special Protection Area (SPA) (site code: O04030), which is approximately 2.8 km east of the site; along the estuary. A closer portion of the SPA is located approximately 1.7 km to the south of the site but this is thought to be less connected to the site due to the significant topography between the site and the SPA area to the south. Cork Harbour is designated as a SPA for its role in supporting a number of bird and invertebrate species. Douglas River Estuary Proposed Natural Heritage Area (pNHA) The Douglas River Estuary Proposed Natural Heritage Area (site code: 001046) overlies much of the same area of the Cork Harbour SPA and is approximately the same distance and location from the proposed site.
Flooding	According to OPW flood mapping (Appendix B) the site appears to be at risk of fluvial and coastal flooding in extreme events (Annual Exceedance Probability of 0.1\%).
Zoning	The primary land use in the area is commercial with rare areas of open space and public amenity designated locally in the surrounding area. The Cork City Council Development Plan 2015-2021 (Appendix B) shows much of the area designated as Mixed Use Development, with District Centre designated along part of the cable section.

3.4 SITE GEOLOGY AND HYDROGEOLOGY

There is no site investigation data available from the site location.

The details of the typical cable and trench dimensions for a fluid filled cable includes the following;

- Depth to the base of trench 1200 mm
- Depth to top of cable $900 \mathrm{~mm}-1000 \mathrm{~mm}$
- Thickness of sand surrounding cable 350 mm
- Width of trench 1100 mm
- Backfill can be either arisings or Clause 804.

According to the GSI Database the site is underlain by several geological formations; the northern section of the site is underlain by the flaser bedded sandstones and mudstones of the Cuskinny Member of the Kinsale Formation. The central section of the site, and location of the leak point, is underlain by the dark muddy limestones of the Ballysteen Formation. The southern section of the site is underlain by Waulsortian Limestones which are comprised of massive unbedded limestones (typically fine-grained micrites). These bedrock formations are overlain by approximately $3-4 \mathrm{~m}$ of Made Ground and $3-5 \mathrm{~m}$ of silt and clay which is underlain by up to 50 m of sand and gravel known as the Lee Valley Gravels.

There have been several intrusive investigations in the vicinity of the site; the closest site investigation was that completed on the site of the Marina Power Station in 1974 (Appendix F), in preparation for the installation of a gas turbine unit. A series of 15 boreholes were completed on the site; the greatest
depth of excavation was 46.6 mBGL . Some of the boreholes were completed after a 10 ft pit was dug and logged. A summary of the log details is available in Appendix F.

Figure 3.1 - Geotechnical Borehole locations (from GSI Database). Power station SI holes labelled.

A site investigation report from the 1950's site feasibility work prior to the development of the Marina Power Station, details the groundwater level variations on the site in response to tidal influence. A tidal variation of $2-3 \mathrm{~m}$ was recorded in a series of $3-4$ groundwater monitoring wells on the ESB station facility (Appendix F).

A detailed assessment and invitation of historic contamination in the Marina Commercial Park area was commissioned by Cork City Council in 2005. The investigation was carried out by T.J. O’Connor/D.H.V. Consulting Engineers and was completed in 2007. The investigation involved extensive ground investigation, sampling, analysis and risk assessment. In summary, the works showed that much of the Marina Commercial Park is significantly contaminated (in zones) by volumes of hydrocarbons and volatile chlorinated hydrocarbons (VCHs). It was found that, whilst the gravel aquifer underlying the area appears to be protected by a significant impermeable clay layer, building users in the area are at significant risk from ground contamination (see reference below).

The topography of the area as obtained from the GSI database show the leak point is located at approximately 6 metres above the ordnance datum (mOD) with the Lee Estuary downgradient at OmOD. The topographic contours are orientated approximately east to west which infers that the
groundwater flow direction is likely to be in a north/north-easterly flow direction, as presented in Figure 2 and within the CSM in Figure 3 and 4.

3.5 SUMMARY OF PREVIOUS SITE SAMPLING AND MONITORING DATA

The made ground within the cable trench is reported to be up to 1.2 m deep and contained sand and backfill material. The underlying limestone derived glacial till and made ground is reported to be of low to moderate permeability with a thickness of 2 to 6 m (above the gravel aquifer).

At the time of reporting, Irish Water have examined all available drinking water quality sample data and have concluded that there is no evidence that COPCs from the leak site have infiltrated the local drinking water supply. This evaluation is based on a review of all samples taken from customer-points, between 2014 and 2019; which showed no evidence that the COPCs (PAHs and Benzenes) were present in the water supply at levels above drinking water standards (PAHs: $0.1 \mu \mathrm{~g} / \mathrm{L}$; Benzene: $1.0 \mu \mathrm{~g} / \mathrm{L}$). These results (which are from samples taken at the customer tap) would not indicate that leaks from oil filled cables have contaminated the drinking water supply for these areas, or at least to an extent where any contamination arising has resulted in a breach of the parametric value for PAHs and Benzene (Appendix H).

The ESB Marina Generating facility operated under an EPA IPCC emission license up until 2018 when the plant was fully decommissioned. As part of this license, the ESB regularly reported noise, groundwater, surface water and air quality conditions on the site. The results of these samples were reported to the EPA as per the license agreements in place. A summary of the Environmental and Human Health Pollutant Linkages for the COPCs (TPH fractions, Speciated PAHs, BTEX Compounds, SVOCs, VOCs) in relation to the known leak point details and available desk study information is presented in Section 4.0.

For the COPC the following can be determined;

- Linear Alkyl Benzenes (LAB) is of low mobility and strongly absorbs to soil. It has low to moderate volatility and will remain largely as free product or sorb to soil/fill material. It is readily biodegradable in aerobic conditions and does not bio-accumulate.
- Mineral Oils are refined from petroleum crude oils and are complex mixtures of straight- and branched hydrocarbons and are insoluble in water. Mineral oil with hydrocarbon fractions of C15 and greater have a very low mobility and low degradation half-lives. They therefore have the potential to persist in the environment. The longer carbon chain lengths also mean that mineral oil will have a relatively low volatility.

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

4.1 PRELIMINARY QUALITATIVE RISK ASSESSMENT (PQRA)

4.1.1 Risk Assessment Methodology

This report has been prepared considering the most relevant guidance published by the Irish Environmental Protection Agency (EPA) and the UK Environment Agency (EA) guidance, specifically as follows:

1. Guidance on the Management of Contaminated Land and Groundwater at EPA Licensed Sites, EPA 2013;
2. Model Procedures for the Management of Land Contamination - Contaminated Land Report (CLR 11), UK EA 2004.

Both approaches advocate a risk-based assessment when dealing with contaminated land and groundwater issues and this is considered as best practice.

Current surface water and groundwater pollution legislation is taken into account for these assessments as required under the Water Framework Directive, Directive 2000/60/EC, that was adopted in 2000 as a single piece of legislation covering rivers, lakes, groundwater and transitional (estuarine) and coastal waters and includes heavily modified and artificial waterbodies. Its objectives are to prevent further deterioration of and to protect, enhance and restore the status of all bodies of water with the aim of achieving at least good status.

It was given effect in Ireland under the European Communities (Water Policy) Regulations 2003 as amended, the European Communities Objectives (Surface Waters) Regulations 2009, as amended and the European Communities Environmental Objectives (Groundwater) Regulations 2010, as amended. These Water Policy Regulations govern the shape of the WFD characterisation, monitoring and status assessment programmes.

A critical element of the risk assessment process is the establishment of a Conceptual Site Model (CSM) for the land and groundwater environment. A CSM describes the potential sources of contamination at a site, the migration pathways it may follow and the receptors it could impact. If complete source-pathway-receptor scenarios exist, then there is a potential pollutant linkage that needs to be characterised and assessed (via formal risk assessment). The CSM is updated as more information is gathered from subsequent desk studies and site investigations with a preliminary CSM presented in Figures 3 and 4.

4.2 OUTLINE SITE CONCEPTUAL MODEL

On the basis of the desk study and site walkover, a number of possible pollutant linkages have been identified for this site. Based on available information the outline site conceptual model is presented in Tables 4.1 below which considers possible pollutant linkages for the site.

Table 4.1 - Outline Site Conceptual Model (Environmental and Human Health)

Potential
Pollutant Linkage (Y/N)

Discussion

Human Health

	LAB volatilisation from soil, groundwater and LNAPL into soil pore spaces (Vapour Phase in unsaturated soils), upward migration into houses \& other properties to indoor air and then inhalation.	Residents \& other commercial or retail building users	Y	There are commercial and retai properties in the immediate vicinity and downgradient of the leak point. Vapour phase migration will be preferential potentially along utility service runs and through more permeable made ground soils and or sand/gravel fractions of soils if present.
Historical leaks of cable fluid from underground electricity cables comprising of an approximate volume of 773 litres of linear alkyl benzene (LAB) mixed with mineral oil (MO); November 2012.	LAB partitioning to soil (sorbed phase), groundwater (dissolved phase) and as NAPL (free phase). Then direct dermal contact/ingestion of soils and or dusts, inhalation of soil dusts / ingestion of home grown produce.	 other commercial or retail building users	Y	There are commercial and retail properties in the immediate vicinity and downgradient of the leak point. The cable source of leak is at a depth of 0.9 m and so direct contact and ingestion pathways are unlikely to be viable unless groundwater levels are near ground surface bringing contamination upwards into shallow soils where direct contact is possible.
PCOCs include: TPH fractions, BTEX compounds, Speciated PAHs SVOCs vOCs	LAB partitioning to soil (sorbed phase), groundwater (dissolved phase) and as NAPL (free phase). Then permeation through plastic potable water supply pipes and ingestion.	Nearby residents	Y	The water supply pipes could potentially run through contaminated zones. LAB and MO have the potential to permeate through the wall of plastic supply pipes and also through joins and gaskets. An internet search has not identified proven instances where this has occurred elsewhere. Any permeating compounds would be diluted depending on water flows in the pipe. A WHO drinking water standard for hydrocarbons $>\mathrm{C} 10$ is $0.09 \mathrm{mg} / \mathrm{l}$ which exceeds the LAB theoretical solubility limit of $0.041 \mathrm{mg} / \mathrm{l}$. So, unless NAPL is present within the pipe, then this WHO drinking water standard would not be exceeded.

				migration into the gravel and limestone aquifer is possible due to the general vulnerability of both aquifers locally.

4.3 POLLUTANT LINKAGE ASSESSMENT

As outlined in Tables 4.1 above a number of possible pollutant linkages were identified, which have been further risk assessed with reference to BS10175:2011 and CIRIA Document C552: Contaminated Land Risk assessment 'A Guide to Good Practice'. The risk assessment has been carried out by assessing the severity of the potential consequences, taking into account both the potential severity of the hazard and the sensitivity of the target, based on categories given in Table 4.2 below.

Table 4.2 - Potential Hazard Severity Definition

CATEGORY	DEFINITIONS
Severe	Acute risks to human health, catastrophic damage to buildings, major risk to an environmental receptor such as a river
Medium	Chronic risk to human health, pollution of sensitive environmental receptor, significant damage to buildings and structures.
Mild	Pollution of non-sensitive waters, minor damage to buildings or structures
Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non- sensitive ecosystems or species

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway and has been assessed based on the categories given in Table 4.3 below.

Table 4.3 - Probability of Risk Definition

CATEGORY	DEFINITIONS			
High likelihood	Pollutant linkages may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor			
Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term	$	$	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is
:---	:---			
no certainty that it will do so	\quad	Pollutant linkage may be present but the circumstances under which harm would occur are		
:---				
improbable				

The potential severity of the risk and probability of the risk occurring have been combined in accordance with the following matrix in order to give a level of risk for each potential hazard, as presented in Table 4.4 below.

Table 4.4 - Level of Risk for Potential Hazard Definition

	POTENTIAL SEVERITY			
	SROBABILITY OF RISK	Medium	Mild	Minor
High likelihood	Very high	High	Moderate	Low/Moderate
Likely	High	Moderate	Low/Moderate	Low
Low likelihood	Moderate	Low/Moderate	Low	Very low
Unlikely	Low/Moderate	Low	Very Low	Very low

The assessment is discussed below in terms of plausible pollutant linkages.
The pollutant linkages of Linear Alkyl Benzene and Mineral Oil in the shallow soils/groundwater and nearby receptors are summarised in Tables 4.5 below.

Table 4.5 - Pollutant Linkage Assessment for Linear Alkyl Benzene and Mineral Oil

Source	Pathway	Receptor	Severity	Likelihood	Risk Level	Comments
Human Health						
Historical leaks of cable fluid from underground electricity cables comprising of an approximate volume of 773 litres of linear alkyl benzene (LAB) mixed with mineral oil (MO); November 2012 PCOCs include: TPH fractions, BTEX compounds, Speciated PAHs SVOCs	LAB \& MO volatilisation from soil, groundwater and LNAPL into soil pore spaces (Vapour Phase in unsaturated soils), upward migration into houses \& other properties to indoor air and then inhalation	Commercial or retail building users \& residents	Medium	Unlikely	Low	Has the potential to migrate along preferential pathways such as service trenches. Outside of preferential pathways, contamination will strongly sorb to soil, has low mobility, readily biodegrades under aerobic conditions in both soil and water and does not exist readily in the vapour-phase, consequently the risk to nearby commercial customers is low with a residual risk associated with mineral oil. The leak occurred in a concrete-lined, impermeable service trench which was seen to retain much of the leaking fluid at the time of the incident. A significant level of remediation occurred at the time of the leak, with most of the fluid reportedly recovered and contaminated soil/fill material removed; thus reducing the risk posed.

VOCs	LAB \& MO partitioning to soil (sorbed phase), groundwater (dissolved phase) and as NAPL (free phase). Then direct dermal contact/ingestion of soils and or dusts, inhalation of soil dusts / ingestion of home grown produce	Commercial or retail building users \& residents	Medium	Unlikely	Low	The cable source of leak is at a depth of 0.9 m and so direct contact and ingestion pathways are unlikely to be viable unless groundwater levels are near ground surface or capillary action brings contamination upwards into shallow soils where direct contact is possible. The leak occurred in a concrete-lined, impermeable service trench which was seen to retain much of the leaking fluid at the time of the incident. A significant level of remediation occurred at the time of the leak, with most of the fluid reportedly recovered and contaminated soil/fill material removed; thus reducing the risk posed.
	LAB \& MO partitioning to soil (sorbed phase), groundwater (dissolved phase) and as NAPL (free phase). Then permeation through plastic potable water supply pipes and ingestion	Nearby residents and other users of the water mains	Medium	Unlikely	Low	Water supply pipes could potentially be present next to electrical cables with the leaked cable fluid that has the potential to permeate plastic water supply pipes. With the exception of NAPL presence, the risk is unlikely to cause actual harm to health because any permeating contaminants would be diluted by water flows in the water supply pipe and the dissolved concentrations will be less than WHO drinking water threshold guidelines due to low solubility limits. The leak occurred in a concrete-lined, impermeable service trench which was seen to retain much of the leaking fluid at the time of the incident. A significant level of remediation occurred at the time

	LAB \& MO partitioning to soil (sorbed phase), groundwater (dissolved phase) and as NAPL (free phase). Then direct dermal contact/ingestion of soils and or dusts, inhalation of soil dusts	Workers undertaking any subsurface works	Medium	Unlikely	Low	Potential risk to workers from localised areas of contamination will be short term and can be managed with the correct PPE and H\&S procedures. The leak occurred in a concrete-lined, impermeable service trench which was seen to retain much of the leaking fluid at the time of the incident. A significant level of remediation occurred at the time of the leak, with most of the fluid reportedly recovered and contaminated soil/fill material removed; thus reducing the risk posed.
Environmental - Water Receptors						
Historical leaks of cable fluid from underground electricity cables comprising of an approximate volume of 773 litres of linear alkyl benzene (LAB) mixed with mineral oil (MO); November 2012 PCOCs include: TPH fractions, BTEX compounds,	LAB \& MO partitioning to soil (sorbed phase) and as NAPL in soil pore spaces, that then can leach downwards to groundwater in shallow made ground and glacial till soils	Shallow groundwater	Mild	Low Likelihood	Low	Low/Moderate potential risk due to alkyl benzene contamination strongly absorbs to soil, has low mobility, readily biodegrades in aerobic conditions in both soil and water. Mineral oil is less biodegradable therefore has a greater tendency to accumulate and may present a greater risk. Shallow groundwater in made ground and glacial till unlikely to be used as an actual resource due location in a commercial urban area and influence of saline tidal intrusion in groundwater. The leak occurred in a concrete-lined, impermeable service trench which was seen to retain much of the leaking fluid at the time of the incident. A significant level of

Speciated PAHs SVOCs, VOCs,						remediation occurred at the time of the leak, with most of the fluid reportedly recovered and contaminated soil/fill material removed; thus reducing the risk posed.
	LAB and MO direct downward migration as NAPL until reaches shallow groundwater where forms LNAPL and with a limited dissolved plume based on low solubilities, then lateral migrations towards surface waters	Drainage Channels, Atlantic Pond and Lee Estuary	Medium	Unlikely	Low	Has the potential to migrate in shallow groundwater in made ground. The contamination will strongly sorb to soil, has low mobility, readily biodegrades in both soil and water. There was a loss (773L) from the cable which is likely to be transmitted to the adjacent environmental receptor to the leak point. The leak occurred in a concrete-lined, impermeable service trench which was seen to retain much of the leaking fluid at the time of the incident. A significant level of remediation occurred at the time of the leak, with most of the fluid reportedly recovered and contaminated soil/fill material removed; thus reducing the risk posed.
	LAB and MO migration downwards through glacial till to Gravel and Limestone bedrock aquifer and then lateral migration	Gravel and Limestone bedrock aquifer / Groundwater Users	Mild	Low Likelihood	Low	Due to the moderate to high vulnerability in the area, there may be a linkage between the groundwater in the underlying aquifer and the shallow ground water in the overlying made ground and subsoils. The occurrence of low-moderately permeable clays and silt subsoils may offer some natural protection to the underlying gravel and bedrock aquifers. Given there are no

| | | | groundwater users in the area
 downgradient and that the aquifer is
 likely tidally influenced locally. The leak
 occurred in a concrete-lined,
 impermeable service trench which was
 seen to retain much of the leaking fluid
 at the time of the incident. A significant
 level of remediation occurred at the time
 of the leak, with most of the fluid
 reportedly recovered and contaminated
 soil/fill material removed; thus reducing
 the risk posed. |
| :--- | :--- | :--- | :--- | :--- |

4.4 SUMMARY OF PRELIMINARY QUANTITATIVE RISK ASSESSMENT

4.4.1 A desktop study and site walkover were conducted in relation to a recorded cable leak location along the Marina Commercial Park side of the Centre Park Road in Cork City. It is reported that 773 litres of linear alkyl benzene mixed with mineral oil were lost from the cable over a onemonth period in November 2012. Results of the PQRA are summarised below:

4.4.2 Human Health:

- There is a potentially Low risk posed by LAB and MO vapours in suspected contamination in the soil and groundwater through preferential pathways such as services ducts to commercial or other building users;
- There is a potentially Low risk posed by LAB and MO from contact with suspected contamination in the soil and groundwater through direct dermal/inhalation and ingestion contact to commercial or other building users;
- There is a potentially Low risk posed by LAB and MO contact from ingestion contact with suspected contamination in the soil and groundwater through permeation of contamination through plastic water pipes;
- There is a potentially Low risk to construction workers from dermal/inhalation and ingestion pathways which can be managed by appropriate use of PPE and H\&S procedures.

4.4.3 Environmental:

- There is a potentially Low risk posed by LAB and MO to shallow groundwater from suspected contamination in the shallow made ground and sand and gravel subsoils given the contaminant properties of low mobility and high sorption to soil, with shallow groundwater unlikely to be a viable groundwater resource in the commercial urban and tidally-influenced setting.
- There is a potentially Low risk posed by LAB and MO to the nearby drainage channels that feed into the Atlantic Pond and the Lee estuary, from the suspected contamination within shallow groundwater.
- There is a potentially Low risk posed by LAB and MO to the underlying Gravel and Limestone Bedrock Aquifers given the moderate-high vulnerability indicating shallow to outcropping rock in the area and the known extent of sand and gravel below the site. The occurrence of low-moderately permeable clays and silt subsoils may offer some natural protection to the underlying gravel and bedrock aquifers.

4.5 SUMMARY AND CONCLUSIONS

This preliminary environmental site assessment consists of a review of the potential environmental impacts associated with a cable fluid leak from a power cable on the Marina Commercial Park side of the Centre Park Road in Cork City (ESB Ref: 27).

There was an approximate volume of 773 litres (I) of cable fluid consisting of linear alkyl benzene (LAB) mixed with Mineral Oil (MO) lost to ground fromreleased from the cable at leak at the Marina Commercial Parkpoint. The leak is reported to have occurred on the morning of 22nd in November 2012 and was repaired shortly later the same day after immediate containment, patching and recover works.afterwards in November 2012. Considering the containment, recovery and remediation actions
taken immediately following the leak incident, the potential environmental and human health risks posed by the cable fluid leak have been largely remediated with regard to the presence/existence and size of a potential COPC source at the leak point. No work to date has investigated whether, if any, COPC was released beyond the concrete cable trench and into the surrounding environment. This lack of certainty means that some residual potential risk remains and has been assessed accordingly.

The known leak point is located close to the northern boundary of the Centre Park Road at the entrance to the ESB's Marina Power Station and 110kV substation facility. There is evidence of abundant site services in the roadway, the grass verge and concrete footpaths with manhole covers and service kiosks. There is no physical evidence of hydrocarbon contamination on the surface in terms of oil odours/staining or impact to vegetation.

The site is underlain by the regionally important gravel aquifer of the Lee Valley Gravels, the locally important bedrock aquifers of the Ballysteen and Kinsale Formations as well as the regionally important karstic aquifer of the Waulsortian Limestones. The vulnerability is Moderate - High, however there are some moderate to low permeability limestone till subsoils (estuarine clays and silts), which provide some natural protection to the underlying gravel and bedrock aquifers.

Local drainage channels are the nearest surface watercourses which lie along the southern end of the cable section and c.200m to the east of the leak point. There are also culverted drains/sewers on the north and south sides of the Centre Park Road, at the location of the leak point, which drain eastward into the drainage channels an onwards into the Atlantic Pond and Lee Estuary. There are no known groundwater wells or ecologically sensitive receptors located within a 1 km radius of the site. Groundwater in the bedrock aquifer is likely to be semi-confined by the moderate-low permeability subsoils with groundwater flow direction in a northerly to north-easterly direction following site topography.

Based on the known cable leak point, COPC fate and transport and hydrogeological desk study information the CSM has the following initial key findings for human health and environmental risks;

There is a Low risk posed by LAB and MO from contact with suspected contamination in the soil and groundwater through;

- direct dermal/inhalation and ingestion contact to residents or other building users;
- dermal/inhalation and ingestion pathways to construction workers, which can be managed by appropriate use of PPE and H\&S procedures;
- ingestion contact with suspected contamination in the soil and groundwater through permeation of contamination through plastic water pipes or through low-pressure infiltration of possible soil contamination into water pipes via nearby breaks or leaks;
- hydrocarbon vapours in preferential pathways such as services ducts to nearby building users;
- Leaching to shallow groundwater given the contaminant properties of low mobility and high sorption to soil, with shallow groundwater unlikely to be a viable groundwater resource in the commercial urban and tidally influenced setting;
- hydrocarbon migration downwards to the underlying aquifer given the possible connection to shallow groundwater through shallow rock and gravels in the area indicated by the moderate to high vulnerability. Lower risk due to absence of groundwater users downgradient, and the likelihood of saline interaction with groundwater locally.
- hydrocarbon migration to the Atlantic Pond and Lee Estuary given the existence of a potential hydrogeological pathway between the leak site and the local drainage channels and the Atlantic Pond \& Lee Estuary downstream.

REFERENCES

- Cork South Docklands Contamination Study, Cork City Council, 2007 (http://sp1ral.corkcity.ie/services/strategicplanningeconomicdevelopment/docklands/infrast ructure/landcontaminationstudy/)
- Investigation of potentially contaminated sites - Code of Practice, BS 10175:2011 + A2 2017, published by BSI, 2017.
- Code of Practice for Site Investigations, BS 5930:2015, published by BSI, 2015.
- "Model Procedures for the Management of land Contamination" Contaminated Land Report 11 (CLR 11), published by the UK Environment Agency \& DEFRA, 2004, being withdrawn shortly to be replaced with online guidance called Land Contamination Risk Management (LCRM).
- Guidance on the Management of Contaminated Land and Groundwater at EPA Licensed Sites, EPA 2013.
- Guidance on Authorisation of Discharges to Groundwater, published by the EPA (Ireland) in December 2011.
- Petroleum Products in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization 2008.
- MSDS for T3788 and REACH database for C10-C13 Linear Alkyl Benzenes CAS No. 67774-74-4 - https://echa.europa.eu/registration-dossier/-/registered-dossier/15763/6/1.
- Petroleum Hydrocarbons in Groundwater. Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies. CLAIRE 2017.
- The LQM/CIEH S4ULs for Human Health Risk Assessment, Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3484, All rights reserved, November 2014.
- European Standard (BS EN 858-1:2002 and BS EN 858-2:200)3; for the design, use, selection, installation, operation and maintenance of prefabricated oil separators.
- Towards setting guideline values for the protection of groundwater in Ireland, interim report, Environmental Protection Agency, 2003.
- European Communities Environmental Objectives (Groundwater) Regulations, 2010, S.I. No. 9 of 2010.
- European Union Environmental Objectives (Surface Waters) (amendment) Regulations 2015, European Communities Environmental Objectives (Surface Waters) Regulations 2009.
- http://www.epa.ie/pubs/advice/drinkingwater/drinkingwatersupplies.
- National Authority for Occupational Safety and Health 2011 Code of Practice for in support of the Safety, Health and Welfare at Work (Chemical Agents) Regulations, 2001.
- European Union Risk Assessment Report. Benzene C_{10-13} Alkyl Derivs, $1^{\text {st }}$ Priority List, Volume 3. European Commission - Joint Research Centre Institute for Health and Consumer Protection European Chemicals Bureau (ECB), 1999.
- European Commission. Guidance Document for the implementation of the European PRTR, May 2006.
- Classification of Hazardous and Non-Hazardous Substances in Groundwater 2010, EPA 2010.

Respectfully submitted
On behalf of Verde Environmental Consultants

Senior Hydrogeologist
Project Director

FIGURES

APPENDIX A

ESB SITE LAYOUT PLAN WITH INDICATIVE CABLE FLUID LEAKAGE LOCATION

APPENDIX B

DESK STUDY MAPS

APPENDIX C

SITE PHOTOGRAPHS

Photo 1: View south from Centre Park Road into ESB property.
Cable route is along the left of the gravel roadway near the chain link fence.

Photo 2: Area west of cable route south of Centre Park Road Concrete bunds in area of former fuel tanks and pipelines

(1)

Photo 3: Watercourse that drains along the southern boundary of the ESB property and cable route.
Clear, low flowing water that drains in a north easterly flow direction

Photo 4: View of Cable Leak Point north of Centre Park Road.

Photo 5: Location of Cable Leak Point on area of fresher footpath concrete. OPW offices in background.

Photo 6: View north from Centre Park Road into ESB property.
Cable route is along the concrete roadway north to the ESB Building in the foreground.

Photo 7: Watercourse approximately 150 m east of leak point, north of centre park road (clear water, low flow).

Photo 8: Watercourse approximately 150 m east of leak point, south of centre park road (clear water, low flow).

APPENDIX D

MATERIAL SAFETY DATA SHEETS FOR CONTAMINANTS OF CONCERN (COPC)

1: IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND OF THE COMPANY / UNDERTAKING

Product Name: \quad T 3788
Application: Hollow-core Energy Cable Saturant
Company: H\&R ESP Ltd.

Address: Matrix House
North $4^{\text {th }}$ Street
Milton Keynes, MK9 1NJ
United Kingdom
Telephone: $\quad+44(0) 1908351111 \quad$ Fax: $\quad+44(0) 1908351122$

2: COMPOSITION / INFORMATION ON INGREDIENTS

Composition: Low viscosity compound based on a blend of linear alkyl benzenes that have side alkyl chains of $10-13$ carbon atoms in length.

Synonyms: Linear Alkyl Benzenes
Alkyl C10-C13, benzenes
Benzene, C10-13-alkyl-deriv.
Detergent Alkylate

Composition	EINECS number	CAS number	Symbol letters	Risk numbers	Concentration range
C10-C13 Linear Alkyl Benzenes	$267-051-0$	$67774-74-7$	Not regulated	100%	

All constituents of this product are listed in EINECS (European Inventory of Existing Commercial Chemical Substances) or ELINCS (European List of Notified Chemical Substances) or are exempt.

3: HAZARDS IDENTIFICATION

Classification of preparation:
This product is not classified as a dangerous substance / preparation in accordance with The Chemicals (Hazard Information and Packaging for Supply) Regulations 2002 (CHIP3).

Not classified as flammable, but will burn. Avoid contact with strong oxidisers.

Skin:	Contact with the skin may cause irritation. Prolonged or repeated skin contact may cause drying of the skin, progressing to dermatitis. Symptoms may include itching, discolouration, swelling and blistering.
Eyes:	Contact with the eyes may cause irritation. Symptoms may include reddening, swelling and impaired vision.
Ingestion:	Ingestion of small amounts may cause nausea and vomiting.
Inhalation:	Due to low volatility, this product should not present an inhalation hazard under ambient conditions. Exposure to vapour or mineral oil mists may irritate the mucous membranes and cause dizziness, headaches and nausea.

Environmental Effects

No specific hazards under normal use conditions.

4: FIRST AID MEASURES

Inhalation:	Remove from further exposure. If respiratory irritation, dizziness, nausea, or unconsciousness occurs, seek immediate medical assistance and call a doctor. If breathing has stopped, administer artificial respiration.
Skin contact:	Remove contaminated clothing and wash affected skin with soap and water. If persistent irritation occurs, obtain medical attention. If high pressure injection injuries occur, obtain medical attention immediately.
Eye contact:	Flush eye with copious quantities of water. If persistent irritation occurs, obtain medical attention.
Ingestion:	Wash out mouth with water and obtain medical attention. DO
	NOT INDUCE VOMITING.

5: FIRE FIGHTING MEASURES

Suitable extinguishing media: Carbon dioxide $\left(\mathrm{CO}_{2}\right)$, dry chemical, foam or water spray. Unsuitable extinguishing media: Special exposure hazards:

Special protective equipment:

Do not use water jets
Combustion is likely to give rise to a complex mixture of airborne solid and liquid particulates and gases, including carbon monoxide, and unidentified organic and inorganic compounds.
Proper protective equipment including breathing apparatus must be worn when approaching a fire in a confined space.

6: ACCIDENTAL RELEASE MEASURES

Personal Precautions:
Environmental Precautions:

Methods for cleaning up:

Spilt product presents a significant slip hazard. Remove any sources of heat.
Prevent from spreading or entering into drains, sewers and watercourses by using inert absorbent material or other appropriate barriers. Inform local authorities if this cannot be prevented.
Absorb liquid with inert absorbent material. Sweep up and remove to a suitable, clearly marked container for disposal in accordance with local and national regulations

7: HANDLING AND STORAGE

Handling: Do not eat, drink or smoke whilst using this product. To avoid the possibility of skin disorders repeated or prolonged contact with products of this type must be avoided. It is essential to maintain a high standard of personal hygiene.
Storage:
Store in a cool place away from sources of heat and out of direct sunlight to avoid pressure build up. Do not store near oxidisers.

Handling and Storage Materials and Coatings

Suitable: Carbon steel, baked epoxy or Phenolic coatings, aluminium.
Unsuitable: \quad Natural rubber, Butyl rubber

8: EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational Exposure Limits:
Engineering control measures:

Hygiene measures:
Respiratory Protection:

Hand Protection:

Eye Protection:

Not established.
Use of local exhaust ventilation is recommended whenever this product is used in a confined space, is heated above ambient temperatures, or is agitated.
Wash hands before eating, drinking, smoking and using the toilet. Gloves should be washed before being removed.
Normally not required if adequate ventilation is in place. Where concentrations in air may exceed the limits given in this section, it is recommended to use a half mask respirator to protect from over exposure by inhalation. Suitable filter material depends on the amount and type of chemicals being handled, but filter material suitable for organic vapours may be considered for use.
When handling this product it is recommended to wear chemical resistant gloves. Suggested materials for protective gloves include: PVC, Neoprene or similar.
Wear eye protection such as safety glasses, chemical goggles, or face shield if engineering controls or work practices are not adequate to prevent eye contact. Have suitable eye wash water available.

Wear impervious protective clothing to prevent skin contact. Selection of protective clothing may include gloves, apron, boots, and complete facial protection depending on operations conducted.

9: PHYSICAL AND CHEMICAL PROPERTIES

General Information

Appearance:
Odour:

Clear, colourless liquid
Mild petroleum odour

Health, safety and environmental information
pH : Not determined
Boiling point/range:
$280^{\circ} \mathrm{C}$
Flash point: $>135^{\circ} \mathrm{C}$
Flammability:
Explosive properties:
Non flammable

Oxidising properties:
Vapour pressure at $20^{\circ} \mathrm{C}$:
Density:
Solubility in water:
Kinematic Viscosity at $20^{\circ} \mathrm{C}$:
Not explosive
Not applicable
$<0.02 \mathrm{kPa}$
$0.86 \mathrm{~g} / \mathrm{cm}^{-3}$ at $20^{\circ} \mathrm{C}$ typical
Insoluble
$4.0-4.5 \mathrm{cSt}\left(4.0-4.5 \mathrm{~mm}^{2} / \mathrm{s}\right)$ typical
Vapour density (Air=1):
>1
Evaporation rate: Not determined

Other information

Pour point:
Expansion coefficient:
Neutralisation value:
$-60^{\circ} \mathrm{C}$ typical
$0.0007 /{ }^{\circ} \mathrm{C}$ typical
$0.03 \mathrm{mg} \mathrm{KOH} \mathrm{g}^{-1}$ maximum

10: STABILITY AND REACTIVITY

Chemical stability:

Conditions to avoid:
Materials to avoid:
This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure and will not polymerise.
Temperatures above $140^{\circ} \mathrm{C}$
Strong oxidising agents, such as liquid chlorine, concentrated oxygen, sodium hypochlorite, calcium hypochlorite, peroxides etc, as this may present an explosion hazard.
Hazardous decomposition products: Carbon monoxide and irritant fumes may be generated if this product is burned in an enclosed space.

11: TOXICOLOGICAL INFORMATION

Basis for assessment:

Acute toxicity:

Corrosivity/irritation:
Eye:
Skin:
Respiratory tract:

Skin sensitisation:
Repeated-dose toxicity:

Mutagenicity:
Carcinogenicity:
Reproductive toxicity:

Toxicological data have not been determined specifically for this product. Information given is based on a knowledge of the components and the toxicology of similar products.

Oral LD50 expected to be $>5000 \mathrm{mg} / \mathrm{kg}$ (rat)
Inhalation LC50/4hr expected to be $>1.8 \mathrm{mg} / \mathrm{l}$ (rat)
Dermal LD50 expected to be $\mathbf{> 2 0 0 0} \mathrm{mg} / \mathrm{kg}$ (rabbit)
May be slightly irritant
May be slightly irritant
If mists are inhaled, slight irritation of the respiratory tract may occur

Not expected to be a skin sensitiser
Prolonged and/or repeated contact may lead to irritation and possibly dermatitis, especially under conditions of poor personal hygiene.
Not expected to be a mutagen.
Not expected to be a carcinogen.
The preparation has not been assessed at all for this endpoint, so its hazardous property in this regard is not known.

12: ECOLOGICAL INFORMATION

Basis for assessment:	Ecotoxicological data have not been determined specifically for this product. Information given is based on a knowledge of the components and the ecotoxicology of similar products.
Ecotoxicity:	Poorly soluble mixture. Product is not expected to be ecotoxic to fish/daphinia/algae, or sewage bacteria. This preparation is expected to be removed in a wastewater treatment facility
Mobility:	Liquid under most environmental conditions. Floats on water. If it enters soil, it will adsorb to soil particles and will not be mobile.
Persistence and degradability: \quadReadily biodegradable. Bioaccumulative potential:\quadSoils degradation - half life approx. 15 days. Natural waters degradation - half life approx. 4-9 days. May have the potential to bioaccumulate	

13: DISPOSAL CONSIDERATIONS

Disposal must be in accordance with local and national legislation.

Unused Product:	Dispose of through an authorised waste contractor to a licensed site. May be incinerated.
Used/Contaminated Product:	Dispose of through an authorised waste contractor to a licensed site. May be incinerated.
Packaging:	Dispose of through an authorised waste contractor. May be steam cleaned and recycled.

14: TRANSPORT INFORMATION

This product is not classified as dangerous for transport.

15: REGULATORY INFORMATION

Classification/Symbol: Not Regulated
This preparation is not classified as Dangerous according to EU Directives
This safety data sheet is intended to assist in compliance with the following UK legislation:

- Chemicals (Hazard Information and Packaging for Supply) Regulations 2002
- Control of Substances Hazardous to Health Regulations 2002.
- Health and Safety at Work, etc. Act 1974.
- Environmental Protection Act 1990
- Environmental Protection (Duty of Care) Regs. 1991
- COSHH essentials: Easy steps to control chemicals. Control of Substances Hazardous to Health Regulations

Further Guidance

The following guidance notes are available from HMSO or HSE.
Occupational exposure limits (EH 40). Effects of mineral oil on the skin (SHW 397).
Preventing dermatitis at work (INDG 233)
A step by step guide to COSHH assessment (HSG 97)
Assessing and managing risks at work from skin exposure to chemical agents (HSG 205)
The selection, use and maintenance of respiratory protective equipment: A practical guide (HSG
53)

Relevant EC Directives:

- Dangerous Substances Directive (DSD)
- Dangerous Preparations Directive (DPD)
- Safety Data Sheets Directive (SDSD)
- Health \& Safety Framework Directive

16: OTHER INFORMATION

This data sheet was prepared in accordance with Commission Directive 2001/58/ECand SI 2002 No. 1689 (CHIP 3)

Key References:

- Chemicals (Hazard Information and Packaging for Supply) Regulations 2002
- The compilation of safety data sheets. Approved Code of Practice (third edition)
- Approved supply list ($7^{\text {th }}$ Edition). Information approved for the classification and labelling of substances and preparations dangerous for supply. Chemicals (Hazard Information and Packaging for Supply) Regulations 2002
- Approved classification and labelling guide. Chemicals (Hazard Information and Packaging for Supply) Regulations 2002. Guidance on regulations (Fifth edition).
- EH40/2005 Workplace Exposure Limits 2005
- COSHH essentials: Easy steps to control chemicals. Control of Substances Hazardous to Health Regulations
- European Inventory of Existing Commercial Substances (EINECS)

The data and advice given apply when the product is sold for the stated application or applications. The product is not sold as suitable for any other application. Use of the product for applications other than as stated in this sheet may give rise to risks not mentioned in this sheet. You should not use the product other than for the stated application or applications without seeking advice from us.

If you have purchased the product for supply to a third party for use at work, it is your duty to take all necessary steps to secure that any person handling or using this product is provided with the information in this sheet.

If you are an employer, it is your duty to tell your employees and others who may be affected of any hazards described in this sheet and of any precautions that should be taken.

We believe, in good faith and to the best of our knowledge that the preceding information is accurate. However, we give no guarantee or warranty in this respect. The information provided herein may not be adequate for all individuals and/or all situations. The purchaser/user of the product remains responsible for storing, using or dealing with the product safely and in accordance with all applicable laws and regulations.

Safety Data Sheet (93/112/EC)

Date of edition: October 1995

1. Identification of Substance/Preparation and Company

 Product name:Masse 106

Supplier:

FEL.TEN \& GUILLEAUME Energietechnik AG
Sclanzenstraße 24-30
51063 Köln
Emer jency telephone number: 0221/676-3333
2. Composition/Information on Ingredlents

Blend of highly refined mineral oils and additives.
On the basis of available information, the components of this preparation are not expected to impart hazardous properties to this product.
3. Hazards Identifikation

Human Health Hazards
If swallowed, aspiration ipto the lungs may cause chemical pneumonitis.
Prolonged or repeated exposure may give rise to dermatitis.
No specific hazards under nonnal use conditions.
Safet/hazards
The preparation contains mineral oil, for which an exposure limit for oil mist applies.
Envit smental hazards
Ay'd spillape.
The poduct is not eeadily ofodegradiois.

4. First Aid Measures

Inhaintion

Remove to fresh air.
If a:eathing but unconscious, place in the recovery position.
If breathing has stopped, apply artificial respitation.
Medical attention is to be obtained immediately.

Skin

Renove contaminated clothing and wask affected skin with soap and water.
If high pressure injection injuries occur, obtain medical attention immediately.
Eye
Rhise immediately with plenty of water for ar least 10 minutes and seek medical advice.
Ingestion
Do not induce vomiting.
Assiration into the lungs may occur directly or following ingestion. This can cause chemical pneumonitis wisch may be fatal.
If verathiag but uncoascious, place in the recovery position.
If tseathigg las stopped, apply artificial respiration.
Medical attention is to be obtained inumediarely.
Advice to physicians
Trest symptomatically
5. Fire Fighting Measures

Extinguishing modia
Foan, dry chemical powder, carbon dioxide, sand or earth.

Date of edition: October 1995

Product name: Masse 106
5. Fire Fighting Measures (continued)

Unsuitable extinguishing media
Do not uso water in a jet
Specific hazards

- Combustion is likely to give rise to a complex mixture of gases and airborne particulates, including carbon mocoxide, oxides of sulpbur and unidenifified organic and inorganic compounds.

6. Accidental Release Measures

Personal precautions
Venclate conaminated area thoroughly.
Mininise contact with skin.
Enviroamental precautions
Prevent further leakage or spillage and prevent from entering drains.
Prevent from spreading or eatering into drains. ditches or rivers by using sand, earth or other appropriate barriers.
Clean-up methods
Abscrb or contain liquid with sand, earth or spill conrrol material.
Shoral into a suitable, clearly marked conasiner for disposal or reclanation in aceerdance with local regulations.
7. Handiag and Storage

Hand ing
Whit using co not eat or drink.
Wha: handling product in drums, safety footwear should be wom and proper handing equipir sat should be used
Pre : at spillages.
Storas:
Kee, conainer tighly closed and in a well veatilated place. Avoid direct suclight, heat sources and stroag oxidising agents.
Ree smmeeded materials: mild steel, Ligh deusity polyethylene for containers or conrainer llinings.
8. Exposure Controls/Personal Protection

Engincering control measures
Use saly in well ventilated areas.
Occupational exposure standards

Couponent name	Limit type	Value/Unit	Other information
Oifmist	8 h TWA	$5 \mathrm{mg} / \mathrm{m}^{3}$	ACGIH
	10 min STEL	$10 \mathrm{mg} / \mathrm{m}^{3}$	ACGIH

Respiratory Protection
No romally required.
If c i mist canoot be controlled, a respirator firted with an organic vapour cartrige combined with a
par culate prefilter should be used.
Hand Protection
PVC or nitril rubber gloves if splashes are likely to occur and if applicablo.
Eye P otection
Sat iy spectacles
Body Protection
Misimise all forms of skin contact.

Product name: Masse 106
8. Exposure Controls and Personal Protection (continued)

Hygiene measures
Don't keep oily rags in your pockecs.
Wash hands before eating and drinking.
9.- Physical and Chemical Properties

form	liquid	
colour	yellow	
pourpoint	$<.60^{\circ} \mathrm{C}$	DIN ISO 3016
flashpoiat	$145^{\circ} \mathrm{C}$	DNN 51758
flammat sllity - lower limit (vol\%)	0,6	
flamasbility - upper limit (vol\%)	6,5	
vapour pressure ($20^{\circ} \mathrm{C}$)	$<0,01 \mathrm{hPa}$	
deasity ($15^{\circ} \mathrm{C}$)	$888 \mathrm{~kg} / \mathrm{m}^{3}$	DIN 51757
solubili y in water ($20^{\circ} \mathrm{C}$)	negligitle	
n-octaps//water partition coeff	na	
kinemsic viscosity ($40^{\circ} \mathrm{C}$)	$8.5 \mathrm{~mm}^{1 / \mathrm{s}}$	DIN 51562

10. Stabii y /Reactivity

Stability
stabia under normal use conditions
Materals to avoid
str tg oxidising agents
Hazal dous decomposition products
Ha ardous decomposition products are not expected to fom during nonnal storage.
11. Toxicological Information

Toxicological Data:
Acute toxicity - oral
LD : 0 is expected to be $>2000 \mathrm{mg} / \mathrm{kg}$.
Irtitauion of skin, imritation of eye
The product is expected to be slightly irritant,
Sensitisation of skin
The prodakt is not expected to be a skin seasitiser.
Prolonged and/or repeated contact
Philonged/repeated contact may cause defatting of the skin, which can lead to derratitis and may make the shis more susceptible to irritation and penetration by other materials.
Carcizogenicity
Pro duet is based on mineral oils of types shown to be non-carcinogenic in animal skin-paintir a studies. Other componants are not known to be associated with carcinogenic effects.
Other information
Aspiration into the lungs may occur directly or following ingestion. This can canse chemical noeumonitis which may be fatal.
Ito (umation given is based on a knowledge of the toxicology of similar products.

Safety Data Sheet
 (93/112/EC)

Date of edition: October 1995

Product name: Masse 106

12. Ecological Information

Basis for assessment
Information given is based on data on the components and the ecotoxicology of similar products.
Mobility
Product floats on water. It is liquid under most eavirommental conditions.
If it eaters soil, it will be adsobbed to soil particles and will not be mobile.
Prohuct bas the potential to bioaccumulate.
Ecotoxicity
Profuct is expected to be practically noo-toxie to aquatic organisms, LC/EC50 $>100 \mathrm{mg} / \mathrm{L}$.

13. Disposal Considerations

Product
Prectautions: Dispose to licensed disposal coniractor.
Waste disposal Ne. (D): 54106
Contamer disposal
Drain container thoroughly.
Dispose to licensed disposal contractor.
Recomanded cleaning procedure
Cleasing by disposal contractor
14. Transport Information

Produ. is tot dangerous for conveyance under UN, IMO, ADR/RID and IATA/ICAO codas. (Accoldiag:
$\mathrm{ADR} /, \operatorname{DD}$ reguiations from (.1.1995)
15. Regulatory Information

Classification
Th. Product is not classified as dangerous under EC criteria.
16. Other'Information

Addit.unal informations
Concawe Report $5 / 87$ Health Aspects of Lubricants.
This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should therefore not be construed as guaranteeing any specific property of the product.

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND COMPANY/UNDERTAKING

Material Name	Shell Diala Cable Oil
Uses	Insulating oil.
Product Code	001D8369
Manufacturer/Supplier	Shell UK Oil Products Limited $\text { PO BOX } 3$ Ellesmere Port CH65 4HB United Kingdom
Telephone	+44 (0) 151-350-4000
Fax	+44 (0) 151-350-4000
Email Contact for MSDS	If you have any enquiries about the content of this MSDS please email lubricantSDS@shell.com
Emergency Telephone Number	+44-(0) 151-350-4595

2. HAZARDS IDENTIFICATION
EC Classification : Harmful.

Health Hazards : Repeated exposure may cause skin dryness or cracking. Harmful: may cause lung damage if swallowed.

Signs and Symptoms : If material enters lungs, signs and symptoms may include coughing, choking, wheezing, difficulty in breathing, chest congestion, shortness of breath, and/or fever. The onset of respiratory symptoms may be delayed for several hours after exposure. Defatting dermatitis signs and symptoms may include a burning sensation and/or a dried/cracked appearance. Ingestion may result in nausea, vomiting and/or diarrhoea.
Safety Hazards : Not classified as flammable but will burn.
Environmental Hazards : Not classified as dangerous for the environment.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Preparation Description : Alkyl benzene.

Hazardous Components

Chemical Identity	CAS	EINECS	Symbol(s)	R-phrase(s)	Conc.	
Benzene, C10-	$67774-74-7$	$267-051-0$	Xn	R65; R66	$90.00-100.00 \%$	
C13 alkyl derivitives						

Additional Information : Refer to chapter 16 for full text of EC R-phrases.

4. FIRST AID MEASURES

| Inhalation | $:$No treatment necessary under normal conditions of use. If
 symptoms persist, obtain medical advice. |
| :--- | :--- | :--- |
| Skin Contact | $:$Remove contaminated clothing. Flush exposed area with water
 and follow by washing with soap if available. If persistent
 irritation occurs, obtain medical attention. |
| Eye Contact | $:$Flush eye with copious quantities of water. If persistent
 irritation occurs, obtain medical attention. |
| Ingestion | $:$If swallowed, do not induce vomiting: transport to nearest
 medical facility for additional treatment. If vomiting occurs
 spontaneously, keep head below hips to prevent aspiration. If
 any of the following delayed signs and symptoms appear within |
| | the next 6 hours, transport to the nearest medical facility: fever
 greater than $101^{\circ} \mathrm{F}\left(37^{\circ} \mathrm{C}\right)$, shortness of breath, chest |
| Advice to Physician | congestion or continued coughing or wheezing. |
| | Treat symptomatically. Potential for chemical pneumonitis.
 Consider: gastric lavage with protected airway, administration
 of activated charcoal. Call a doctor or poison control center for
 guidance. |

5. FIRE FIGHTING MEASURES

Clear fire area of all non-emergency personnel.

| Specific Hazards | $:$Hazardous combustion products may include: A complex
 mixture of airborne solid and liquid particulates and gases
 (smoke). Carbon monoxide. Unidentified organic and inorganic |
| :--- | :---: | :--- |
| compounds. | |

6. ACCIDENTAL RELEASE MEASURES

Avoid contact with spilled or released material. For guidance on selection of personal protective equipment see Chapter 8 of this Material Safety Data Sheet. See Chapter 13 for information on disposal. Observe the relevant local and international regulations.

Protective measures	$:$Avoid contact with skin and eyes. Use appropriate containment to avoid environmental contamination. Prevent from spreading or entering drains, ditches or rivers by using sand, earth, or other appropriate barriers.
Clean Up Methods	Slippery when spilt. Avoid accidents, clean up immediately. Prevent from spreading by making a barrier with sand, earth or other containment material. Reclaim liquid directly or in an absorbent. Soak up residue with an absorbent such as clay, sand or other suitable material and dispose of properly.
Additional Advice	$:$Local authorities should be advised if significant spillages

cannot be contained.

7. HANDLING AND STORAGE	
General Precautions	Use local exhaust ventilation if there is risk of inhalation of vapours, mists or aerosols. Properly dispose of any contaminated rags or cleaning materials in order to prevent fires. Use the information in this data sheet as input to a risk assessment of local circumstances to help determine appropriate controls for safe handling, storage and disposal of this material.
Handling	Avoid prolonged or repeated contact with skin. Avoid inhaling vapour and/or mists. When handling product in drums, safety footwear should be worn and proper handling equipment should be used.
Storage	Keep container tightly closed and in a cool, well-ventilated place. Use properly labelled and closeable containers. Storage Temperature: 0-50 ${ }^{\circ} \mathrm{C} / 32-122^{\circ} \mathrm{F}$ The storage of this product may be subject to the Control of Pollution (Oil Storage) (England) Regulations. Further guidance maybe obtained from the local environmental agency office.
Recommended Materials	For containers or container linings, use mild steel or high density polyethylene.
Unsuitable Materials	PVC.
Additional Information	Polyethylene containers should not be exposed to high temperatures because of possible risk of distortion. Exposure to this product should be reduced as low as reasonably practicable. Reference should be made to the Health and Safety Executive's publication "COSHH Essentials".

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

If the American Conference of Governmental Industrial Hygienists (ACGIH) value is provided on this document, it is provided for information only.

Occupational Exposure Limits

Exposure Controls	The level of protection and types of controls necessary will vary depending upon potential exposure conditions. Select controls based on a risk assessment of local circumstances. Appropriate measures include: Adequate ventilation to control airborne concentrations. Where material is heated, sprayed or mist formed, there is greater potential for airborne concentrations to be generated.
Personal Protective	Personal protective equipment (PPE) should meet
Equipment	recommended national standards. Check with PPE suppliers.
Respiratory Protection	No respiratory protection is ordinarily required under normal conditions of use. In accordance with good industrial hygiene practices, precautions should be taken to avoid breathing of material. If engineering controls do not maintain airborne

concentrations to a level which is adequate to protect worker health, select respiratory protection equipment suitable for the specific conditions of use and meeting relevant legislation. Check with respiratory protective equipment suppliers. Where air-filtering respirators are suitable, select an appropriate combination of mask and filter. Select a filter suitable for combined particulate/organic gases and vapours [boiling point $>65^{\circ} \mathrm{C}\left(149{ }^{\circ} \mathrm{F}\right)$] meeting EN141.
Hand Protection : Where hand contact with the product may occur the use of gloves approved to relevant standards (e.g. Europe: EN374, US: F739) made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Eye Protection	$:$Wear safety glasses or full face shield if splashes are likely to occur. Approved to EU SUndard EN166.
Protective Clothing	Skin protection not ordinarily required beyond standard issue work clothes. It is good practice to wear chemical resistant goves.
Monitoring Methods	Monitoring of the concentration of substances in the breathing zone of workers or in the general workplace may be required to confirm compliance with an OEL and adequacy of exposure controls. For some substances biological monitoring may also be appropriate.
Environmental Exposure \quadMinimise release to the environment. An environmental assessment must be made to ensure compliance with local environmental legislation.	

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Colourless. Liquid at room temperature.
Odour	Slight hydrocarbon.
pH	Not applicable.
Initial Boiling Point and	> $280{ }^{\circ} \mathrm{C} / 536{ }^{\circ} \mathrm{F}$ estimated value(s)
Boiling Range	
Pour point	$<-60{ }^{\circ} \mathrm{C} /-76{ }^{\circ} \mathrm{F}$ Data not available
Flash point	Typical $140{ }^{\circ} \mathrm{C} / 284{ }^{\circ} \mathrm{F}$ (PMCC / ASTM D93)
Upper / lower Flammability or Explosion limits	Typical 1-10\%(V)
Auto-ignition temperature	$>320{ }^{\circ} \mathrm{C} / 608^{\circ} \mathrm{F}$
Vapour pressure	$<0.5 \mathrm{~Pa}$ at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$ (estimated value(s))
Density	Typical $857 \mathrm{~kg} / \mathrm{m} 3$ at $20^{\circ} \mathrm{C} / 68{ }^{\circ} \mathrm{F}$
Water solubility	Negligible.
n-octanol/water partition coefficient (log Pow)	> 6 (based on information on similar products
Kinematic viscosity	Typical $4.2 \mathrm{~mm} 2 / \mathrm{s}$ at $40{ }^{\circ} \mathrm{C} / 104{ }^{\circ} \mathrm{F}$
Vapour density (air=1)	> 1 (estimated value(s))
Evaporation rate ($\mathrm{nBuAc}=1$)	Data not available

10. STABILITY AND REACTIVITY

Stability
Conditions to Avoid : Extremes of temperature and direct sunlight.
Materials to Avoid
Hazardous
Decomposition Products

Stable.
Strong oxidising agents.
: Hazardous decomposition products are not expected to form during normal storage.

11. TOXICOLOGICAL INFORMATION

Basis for Assessment : Information given is based on data on the components and the toxicology of similar products.

Acute Oral Toxicity

Acute Dermal Toxicity Acute Inhalation Toxicity

Skin Irritation

Eye Irritation
Respiratory Irritation Sensitisation Repeated Dose Toxicity Mutagenicity Carcinogenicity

Reproductive and Developmental Toxicity Additional Information
: Expected to be of low toxicity: LD50 > 5000 mg/kg, Rat Aspiration into the lungs when swallowed or vomited may cause chemical pneumonitis which can be fatal.
: Expected to be of low toxicity: LD50 > 5000 mg/kg, Rabbit
: Not considered to be an inhalation hazard under normal conditions of use.
: Expected to be slightly irritating. Repeated exposure may cause skin dryness or cracking.
: Expected to be slightly irritating.
: Inhalation of vapours or mists may cause irritation.
: Not expected to be a skin sensitiser.
: Not expected to be a hazard.
: Not considered a mutagenic hazard.
: Components are not known to be associated with carcinogenic effects.
: Not expected to be a hazard.
: Used oils may contain harmful impurities that have accumulated during use. The concentration of such impurities will depend on use and they may present risks to health and the environment on disposal. ALL used oil should be handled with caution and skin contact avoided as far as possible.

12. ECOLOGICAL INFORMATION

Ecotoxicological data have not been determined specifically for this product. Information given is based on a knowledge of the components and the ecotoxicology of similar products.

Acute Toxicity $\quad:$ Poorly soluble mixture. May cause physical fouling of aquatic organisms. Expected to be practically non toxic: LL/EL/IL50 > $100 \mathrm{mg} / \mathrm{l}$ (to aquatic organisms) (LL/EL50 expressed as the nominal amount of product required to prepare aqueous test extract).
Mobility : Liquid under most environmental conditions. Floats on water. If it enters soil, it will adsorb to soil particles and will not be mobile.
Persistence/degradability : Expected to be inherently biodegradable.
Bioaccumulation : Has the potential to bioaccumulate.
Other Adverse Effects : Product is a mixture of non-volatile components, which are not

Material Safety Data Sheet

expected to be released to air in any significant quantities. Not expected to have ozone depletion potential, photochemical ozone creation potential or global warming potential.

13. DISPOSAL CONSIDERATIONS

Material Disposal	Recover or recycle if possible. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated to determine the proper waste classification and disposal methods in compliance with applicable regulations. Do not dispose into the environment, in drains or in water courses.
Container Disposal	Dispose in accordance with prevailing regulations, preferably to a recognised collector or contractor. The competence of the collector or contractor should be established beforehand.
Local Legislation	Disposal should be in accordance with applicable regional, national, and local laws and regulations. EU Waste Disposal Code (EWC): 130308 synthetic insulating and heat transmission oils. Classification of waste is always the responsibility of the end user. Hazardous Waste (England and Wales) Regulations 2005.

14. TRANSPORT INFORMATION

ADR

This material is not classified as dangerous under ADR regulations.

RID

This material is not classified as dangerous under RID regulations.

ADNR

This material is not classified as dangerous under ADNR regulations.

IMDG

This material is not classified as dangerous under IMDG regulations.

IATA (Country variations may apply)

This material is not classified as dangerous under IATA regulations.

15. REGULATORY INFORMATION

The regulatory information is not intended to be comprehensive. Other regulations may apply to this material.

EC Classification	$:$ Harmful.	
EC Symbols	$:$ Xn Harmful.	
EC Risk Phrases	$:$ R65 Harmful: may cause lung damage if swallowed.	
	$:$R66 Repeated exposure may cause skin dryness or cracking. EC Safety Phrases	if swallowed, do not induce vomiting: seek medical advice

Material Safety Data Sheet

Chemical Inventory Status EINECS	
	All components
	listed or polymer
	exempt. All components
	listed.
Classification triggering components	Contains alkyl benzene derivatives.
Other Information	Environmental Protection Act 1990 (as amended). Health and Safety at Work Act 1974. Consumers Protection Act 1987.
	Control of Pollution Act 1974. Environmental Act 1995.
	Factories Act 1961. Carriage of Dangerous Goods by Road and Rail (Classification, Packaging and Labelling) Regulation
	Chemicals (Hazard Information and Packaging for Supply)
	Regulations 2002. Control of Substances Hazardous to Health
	Regulations 1994 (as amended). Road Traffic (Carriage of
	Dangerous Substances in Packages) Regulations. Merchant
	Shipping (Dangerous Goods and Marine Pollutants)
	Regulations. Road Traffic (Carriage of Dangerous Substances
	in Road Tankers in Tank Containers) Regulations. Road Traffic
	(Training of Drivers of Vehicles Carrying Dangerous Goods)
	Regulations. Reporting of Injuries, Diseases and Dangerous
	Occurrences Regulations. Health and Safety (First Aid)
	Regulations 1981. Personal Protective Equipment (EC
	Directive) Regulations 1992. Personal Protective Equipment at
	Work Regulations 1992.

16. OTHER INFORMATION

R-phrase(s)
R65 Harmful: may cause lung damage if swallowed.
R66 Repeated exposure may cause skin dryness or cracking.

MSDS Version Number	1.0
MSDS Effective Date	16.09.2010
MSDS Revisions	A vertical bar (\mid) in the left margin indicates an amendment from the previous version.
MSDS Regulation	Regulation 1907/2006/EC
MSDS Distribution	The information in this document should be made available to all who may handle the product.
Disclaimer	This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

APPENDIX E

WATER FRAMEWORK DIRECTIVE WATERBODY DOCUMENTATION

water matters

'dir Han'

Full Report for Waterbody CorkCity_2

River Basin Management Plans (RBMPs) have been published for all River Basin Districts in Ireland in accordance with the requirements of the Water Framework Directive. The WaterMaps viewer is an integral part of the River Basin Management Plan and provides access to information at individual waterbody level and at Water Management Unit level for all the River Basin Districts in Ireland.

The following report provides summary plan information about the selected waterbody (indicated by the pin in the map above) relating to its status, risks, objectives, and measures proposed to retain status where this is adequate, or improve it where necessary. Waterbodies can relate to surface waters (these include rivers, lakes, estuaries [transitional waters], and coastal waters), or to groundwaters. Other relevant information not included in this report can be viewed using the WaterMaps viewer, including areas listed in the Register of Protected Areas.

You will find brief notes at the bottom of some of the individual report sheets that will help you in interpreting the information presented. More detailed information can be obtained in relation to all aspects of the RBMPs at www.wfdireland.ie.

The information provided above is a summary of the principal findings related to the selected waterbody. Further details and explanation of individual elements of the report are outlined in the following pages.

water matters

'dir Him"

Chemical and Quantitative Status Report
Water Management Unit:
N/A

WaterBody Category:	Groundwater Waterbody
WaterBody Name:	CorkCity_2
WaterBody Code:	IE_SW_G_031
Overall Status Result:	Good
Heavily Modified:	No

south

western

	Status Element Description	Result
	Status information	GS-HC
INS	Status associated with saline intrusion into groundwater	GS-HC
DWS	Status associated with exceedances of water quality above specific standards	GS-LC
DS	Chemical status of groundwater due to pressure from diffuse sources of pollution	GS-HC
CLS	Chemical status of groundwater due to pressure from contaminated soil or land.	GS-HC
MS	Chemical status of groundwater due to pressure from mine sites (active or closed).	GS-LC
UAS	Chemical status of groundwater due to pressures from urban areas	GS-LC
GWS	General groundwater quality status	GS-LC
RPS	Status associated with MRP loading to rivers	GS-LC
TNS	Status associated with nitrate loading to transitional and coastal waters	GS-LC
SWS	Overall status associated with nutrient loadings to rivers and transitional and	
coastal waters	GS-HC	
SQS	Status associated with dependant surface water quantitative status	GS-HC
GDS	Groundwater dependant terrestrial ecosystems status	GS-HC
QSO	Quantitative status overall	GS-LC
CSO	Chemical status overall	Good
OS	Overall status	

GS -HC : Good status High Confidence
GS- LC : Good status Low Confidence
n/a - not assessed

Status

By 'Status' we mean the condition of the water in the waterbody. It is defined by its chemical status and quantitative status, whichever is worse. Groundwaters are ranked in one of 2 status classes: Good or Poor.

You can read more about status and how it is measured in our RBMP Document Library at www.wfdireland.ie (Directory 15 Status).

water matters

'div PHa'

water matters

"dir Pra"

	GW Point Risk Sources		
WB10	Risk from Point sources of pollution - Contaminated Land		N/A
WB11	Risk from Point sources of pollution - Trade Effluent Discharges		N/A
WB12	Risk from Point sources of pollution - Urban Wastewater Discharges		N/A
WB6	Risk from Point sources of pollution - Mines		N/A
WB7	Risk from Point sources of pollution-Quarries		N/A
WB8	Risk from Point sources of pollution - Landfills		N/A
WB9	Risk from Point sources of pollution - Oil Industry Infrastructure		N/A
	Overall Risk		
RA	Groundwater Overall - Worst Case		N/A
	Risk information		
CLR	Contaminated land risk		Not At Risk
DR	Risk of groundwater due to pressure from diffuse sources of pollution	1a	At Risk
DWR	Risk associated with exceedances of water quality above specific standards	20	Not At Risk
GDR	Groundwater dependant terrestrial ecosystems risk	20	Not At Risk
GWR	General groundwater quality risk	1a	At Risk
INR	Risk associated with saline intrusion into groundwater	20	Not At Risk
LR	Risk due to landfills sites/old closed dump sites	2b	Not At Risk
MR	Mines risk	,	Not At Risk
NULL	Diffuse nitrates from agriculture risk		N/A
QR	Risk due to quarries		Not At Risk
RA	Revised risk assessment	1a	At Risk
RPR	Risk associated with MRP loading to rivers	1a	At Risk
SQR	Risk associated with dependant surface water quantitative status		Not At Risk
SWR	Overall risk associated with nutrient loadings to rivers and transitional and coastal waters	1a	At Risk
TNR	Risk associated with nitrate loading to transitional and coastal waters	1a	At Risk
UAR	Risk of groundwater due to pressures from urban areas	1b	Probably At Risk
UWR	Risk due to direct discharges of urban wastewater	20	Not At Risk

Risk

By 'risk' we mean the risk that a waterbody will not achieve good ecological or good chemical status/potential at least by 2015. To examine risk the various pressures acting on the waterbody were identified along with any evidence of impact on water status. Depending on the extent of the pressure and its potential for impact, and the amount of information available, the risk to the water body was placed in one of four categories: 1a at risk; 1b probably at risk; 2a probably not at risk; 2 b not at risk. Note that '2008' after the risk category means that the risk assessment was revised in 2008. All other risks were determined as part of an earlier risk assessment in 2005.

You can read more about risk assessment in our 'WFD Risk Assessment Update' document in the RBMP document I brary, and other documents at www.wfdireland.ie (Directory 31 Risk Assessments).

water matters

'div PHa'

Objectives Report
 Water Management Unit: N/A
 WaterBody Category:
 Groundwater Waterbody

| | Objectives Description | Result |
| :--- | :--- | :--- | :--- |
| E1 | Extended timescale information | No Status |
| E2 | Extended deadlines due to agricultural N | No Status |
| E3 | Extended deadlines due to mines | No Status |
| E4 | Extended deadlines due to urban areas | No Status |
| E5 | Extended deadlines due to contaminated lands | No Status |
| EO | Extended deadlines - overall | No Status |
| | Objectives information | Protect |
| OB1 | Prevent deterioration objective | No Status |
| OB2 | Restore at least good status objective | No Status |
| OB3 | Reduce chemical pollution objective | No Status |
| OB4 | Protected areas objective | Protect |
| OBO | Overall objectives - objective | |

Extended timescales
Extended timescales have been set for certain waters due to technical, economic, environmental or recovery constraints. Extended timescales are usually of one planning cycle (6 years, to 2021) but in some cases are two planning cycles (to 2027).

Objectives

In general, we are required to ensure that our waters achieve at least good status/potential by 2015, and that their status does not deteriorate. Having identified the status of waters (this is given earlier in this report), the next stage is to set objectives for waters. Objectives consider waters that require protection from deterioration as well as waters that require restoration and the timescales needed for recovery. Four default objectives have been set initially:-

Prevent Deterioration
Restore Good Status
Reduce Chemical Pollution
Achieve Protected Areas Objectives
These objectives have been refined based on the measures available to achieve them, the latter's likely effectiveness, and consideration of cost-effective combinations of measures. Where it is considered necessary extended deadlines have been set for achieving objectives in 2021 or 2027

water matters
 "dir Fian"

Measures Report	
Water Management Unit:	N/A
WaterBody Category:	Groundwater Waterbody
WaterBody Name:	CorkCity_2
WaterBody Code:	IE_SW_G_031
Heavily Modified:	No

	Measures Description	Applicable
BC	Total number of basic measures which apply to this waterbody	26
BW	Directive - Bathing Waters Directive	No
BIR	Directive - Birds Directive	Yes
HAB	Directive - Habitats Directive	No
DW	Directive - Drinking Waters Directive	Yes
MAE	Directive - Major Accidents and Emergencies Directive	Yes
EIA	Directive - Environmental Impact Assessment Directive	Yes
SS	Directive - Sewage Sludge Directive	Yes
UWT	Directive - Urban Waste Water Treatment Directive	Yes
PPP	Directive - Plant Protection Products Directive	Yes
NIT	Directive - Nitrates Directive	Yes
IPC	Directive - Integrated Pollution Prevention Control Directive	Yes
CR	Other Stipulated Measure - Cost recovery for water use	Yes
SUS	Other Stipulated Measure - Promotion of efficient and sustainable water use	Yes
DWS	Other Stipulated Measure - Protection of drinking water sources	Yes
ABS	Other Stipulated Measure - Control of abstraction and impoundment	Yes
POI	Other Stipulated Measure - Control of point source discharges	Yes
DIF	Other Stipulated Measure - Control of diffuse source discharges	Yes
GW	Other Stipulated Measure - Authorisation of discharges to groundwaters	Yes
PS	Other Stipulated Measure - Control of priority substances	Yes
MOD	Other Stipulated Measure - Controls on physical modifications to surface waters	Yes
OA	Other Stipulated Measure - Controls on other activities impacting on water status	Yes
AP	Other Stipulated Measure - Prevention or reduction of the impact of accidental	Yes
OTS	Oollution incidents	Yes
FPM	Freshwater Pearl Mussel sub-basin plan	No
FOR	Forestry guidelines and regulations	Yes
SHE	Shellfish Pollution Reduction Plan	Yes
IPR	IPPC licences requiring review	Yes
WPR	Water Pollution Act licences requiring review	Yes

HQW Protect high quality waters Yes

Abstract

Measures Measures are necessary to ensure that we meet the objectives set out in the previous page of this report. Many measures are already provided for in national legislation and must be implemented. Other measures have been recently introduced or are under preparation. A range of additional potential measures are also being considered but require further development. Any agreed additional measures can be introduced through the update of Water Management Unit Action Plans during the implementation process.

You can read more about Basic Measures in 'River Basin Planning Guidance' and in other documents in our RBMP Document Library at www.wfdireland.ie.

water matters

Full Report for Waterbody Lee (Cork) Estuary Lower

River Basin Management Plans (RBMPs) have been published for all River Basin Districts in Ireland in accordance with the requirements of the Water Framework Directive. The WaterMaps viewer is an integral part of the River Basin Management Plan and provides access to information at individual waterbody level and at Water Management Unit level for all the River Basin Districts in Ireland.

The following report provides summary plan information about the selected waterbody (indicated by the pin in the map above) relating to its status, risks, objectives, and measures proposed to retain status where this is adequate, or improve it where necessary. Waterbodies can relate to surface waters (these include rivers, lakes, estuaries [transitional waters], and coastal waters), or to groundwaters. Other relevant information not included in this report can be viewed using the WaterMaps viewer, including areas listed in the Register of Protected Areas.

You will find brief notes at the bottom of some of the individual report sheets that will help you in interpreting the information presented. More detailed information can be obtained in relation to all aspects of the RBMPs at www.wfdireland.ie.

Summary Information:	
Water Management Unit:	N / A
WaterBody Category:	Transitional Waterbody
WaterBody Name:	Lee (Cork) Estuary Lower
WaterBody Code:	IE_SW_060_0900
Overall Status:	Moderate
Overall Objective:	Restore 2021
Overall Risk:	1a At Risk
Heavily Modified:	Yes
	Report data based upon final RBMP, 2009-2015.

The information provided above is a summary of the principal findings related to the selected waterbody. Further details and explanation of individual elements of the report are outlined in the following pages.

water matters

'div PHa'

Status Report		
Water Management Unit:	N/A	South
WaterBody Category:	Transitional Waterbody	Wee (Cork) Estuary Lower
WaterBody Name:	IE_SW_060_0900	
WaterBody Code:	Moderate	
Overall Status Result:	Yes	
Heavily Modified:		

	Status Element Description	Result
	Status information	
DIN	Dissolved Inorganic Nitrogen status	Moderate
MRP	Molybdate Reactive Phosphorus status	Mooderate
DO	Dissolved oxygen as per cent saturation status	Good
BOD	Biochemical Oxygen Demand (5-days) status	Good
PHY	Macroalgae - phytobiomass status	N / A
OPP	Macroalgae - opportunistic algae status	N / A
RSL	Macroalgae - reduced species list status	N / A
ANG	Angiosperms - Seagrass and Saltmarsh status	N / A
BIN	Benthic Invertebrates status	Poor
FIS	Fish status	N / A
HYD	Hydrology status	Less than
MOR	Morphology status	Good
SP	Specific Pollutant Status	N / A
PAS	Overall protected area status	Less than
ES	Ecological Status	good
CS	Chemical Status	Moderate
SWS	Surface Water Status	N / A
EXT	Extrapolated status	N / A
DON	Donor water bodies	N / A

water matters

'dir Pran'
n/a - not assessed

Status

By 'Status' we mean the condition of the water in the waterbody. It is defined by its chemical status and its ecological status, whichever is worse. Waters are ranked in one of 5 status classes: High, Good, Moderate, Poor, Bad. However not all waterbodies have been monitored, and in such cases the status of a similar nearby waterbody has been used (extrapolated) to assign status. If this has been done the first line of the status report shows the code of the waterbody used to extrapolate.

You can read more about status and how it is measured in our RBMP Document Library at www.wfdireland.ie (Directory 15 Status).

water matters

'div PHa'

Risk Report				
Water Management Unit:		N/A		
WaterBody Category:		Transitional Waterbody	south western	
WaterBody Name:		Lee (Cork) Estuary Lower		
WaterBody Code:		IE_SW_060_0900		
Overall Risk Result:		1a At Risk		
Heavily Modified:		Yes		
Risk Test Description			Risk	
	Hydrology			
THY1	Water balance - Abstraction		1a	At Risk
	Marine Direct Impacts			
TMDI D	Dangerous Substances			N/A
1				
TMDI O	OSPAR		1 a	At Risk
TMDI U	UWWT Regs Designations		1a	At Risk
3				
$\begin{aligned} & \text { TMDI } \\ & 0 \end{aligned}$	Marine Direct Impacts Overall - Worst Case		1a	At Risk
	Morphological Risk Sources			
TM1 C	Channelisation			N/A
TM2 D	Deposition			N/A
TM3 C	Coastal Defences			N/A
TM4 I	Impoundments			N/A
TM5a B	Built Structures - Port Tonnage			N/A
TM5b B	Built Structures - Industrial Intakes			N/A
TM6 In	Intensive Landuse			N/A
тMO M	Morphology Overall - Worst Case			N/A
тMO	Overall (MIMAS) Morphological Risk - Worst Case (2008)			N/A
	Overall Risk			
RA	Transitional Overall - Worst CaseOverall (MIMAS) Morphological Risk Worst Case (2008)		1a	At Risk
	Point / MDI Worst Case			
TPOL	Worst case of Point Overall Morphological Risk - Worst	and MDI OverallOverall (MIMAS) Case (2008)	1a	At Risk

water matters

"dir Hia'"

Point Risk Sources		
TP1	WWTPs (2008)	2b
TP2	CSOs	Not At Risk
TP3	IPPCs (2008)	Probably At Risk
TP4	Section 4s (2008)	Not At Risk
TP5	WTPs/Mines/Quarries/Landfills	Not At Risk
TPO	Overall Risk from Point Sources - Worst Case (2008)	

Risk
By 'risk' we mean the risk that a waterbody will not achieve good ecological or good chemical status/potential at least by 2015. To examine risk the various pressures acting on the waterbody were identified along with any evidence of impact on water status. Depending on the extent of the pressure and its potential for impact, and the amount of information available, the risk to the water body was placed in one of four categories: 1a at risk; 1b probably at risk; 2a probably not at risk; 2 b not at risk. Note that '2008' after the risk category means that the risk assessment was revised in 2008. All other risks were determined as part of an earlier risk assessment in 2005.

You can read more about risk assessment in our 'WFD Risk Assessment Update' document in the RBMP document I brary, and other documents at www.wfdireland.ie (Directory 31 Risk Assessments).

water matters

"div Pran"

Objectives Report	
Water Management Unit:	N/A
WaterBody Category:	Transitional Waterbody
WaterBody Name:	Lee (Cork) Estuary Lower
WaterBody Code:	IE_SW_060_0900
Overall Objective:	Restore 2021
Heavily Modified:	Yes

south

 western| | Objectives Description
 Extended timescale information | Result |
| :--- | :--- | :--- |
| E1 | Extended timescales due to time requirements to upgrade WWTP discharges | No Status |
| E2 | Extended timescales due to delayed recovery of chemical pollution and
 chemical status failures | No Status |
| E3 | Extended timescales due to winter dissolved nitrogen exceedances | 2021 |
| E4 | Extended timescales due to time requirements for status recovery | No Status |
| E5 | Extended timescales from Northern Ireland Environment Agency | No Status |
| EOV | Overall extended timescale - combination of all extended timescales fields
 Objectives information | 2021 |
| OB1 | Prevent deterioration objective
 OB2 | Restore at least good status objective |
| OB3 | Reduce chemical pollution objective | No Status |
| OB4 | Protected areas objective | No Status |
| OBO | Overall objectives | No Status |

Extended timescales

Extended timescales have been set for certain waters due to technical, economic, environmental or recovery constraints. Extended timescales are usually of one planning cycle (6 years, to 2021) but in some cases are two planning cycles (to 2027).

Objectives

In general, we are required to ensure that our waters achieve at least good status/potential by 2015, and that their status does not deteriorate. Having identified the status of waters (this is given earlier in this report), the next stage is to set objectives for waters. Objectives consider waters that require protection from deterioration as well as waters that require restoration and the timescales needed for recovery. Four default objectives have been set initially:-

Prevent Deterioration
Restore Good Status
Reduce Chemical Pollution
Achieve Protected Areas Objectives
These objectives have been refined based on the measures available to achieve them, the latter's likely effectiveness, and consideration of cost-effective combinations of measures. Where it is considered necessary extended deadlines have been set for achieving objectives in 2021 or 2027.

water matters

"dir Pra"

Measures Report	
Water Management Unit:	N/A
WaterBody Category:	Transitional Waterbody
WaterBody Name:	Lee (Cork) Estuary Lower
WaterBody Code:	IE_SW_060_0900
Heavily Modified:	Yes

	Measures Description	Applicable
BC	Total number of basic measures which apply to this waterbody	14
BW	Directive - Bathing Waters Directive	No
BIR	Directive - Birds Directive	Yes
HAB	Directive - Habitats Directive	No
MAE	Directive - Major Accidents and Emergencies Directive	Yes
EIA	Directive - Environmental Impact Assessment Directive	Yes
UWT	Directive - Urban Waste Water Treatment Directive	No
PPP	Directive - Plant Protection Products Directive	Yes
NIT	Directive - Nitrates Directive	Yes
IPC	Directive - Integrated Pollution Prevention Control Directive	Yes
POI	Other Stipulated Measure - Control of point source discharges	Yes
DIF	Other Stipulated Measure - Control of diffuse source discharges	Yes
PS	Other Stipulated Measure - Control of priority substances	Yes
MOD	Other Stipulated Measure - Controls on physical modifications to surface waters	
OA	Other Stipulated Measure - Controls on other activities impacting on water status	Yes
AP	Other Stipulated Measure - Prevention or reduction of the impact of accidental pollution incidents	Yes
TP1	WSIP - Agglomerations with treatment plants requiring capital works	No
TP2	WSIP - Agglomerations with treatment plants requiring further investigation prior to capital works	No
TP3	WSIP - Agglomerations requiring the implementation of actions identified in Shellfish PRPs	No
TP4	WSIP - Agglomerations with treatment plants requiring improved operational performance WSIP - Agglomerations requiring investigation of CSOs	No
TP5	WSIP - Agglomerations where exisitng treatment capacity is currently adequate but	No
TP6	predicted loadings would result in overloading OTS	On-site waste water treatment systems
SHE	Shellfish Pollution Reduction Plan	Yes
IPR	IPPC licences requiring review	No
WPR	Water Pollution Act licences requiring review	

HQW Protect high quality waters No
Measures
Measures are necessary to ensure that we meet the objectives set out in the previous page of this report. Many measures are already provided for in national legislation and must be implemented. Other measures have been recently introduced or are under preparation. A range of additional potential measures are also being considered but require further development. Any agreed additional measures can be introduced through the update of Water Management Unit Action Plans during the implementation process.

You can read more about Basic Measures in 'River Basin Planning Guidance' and in other documents in our RBMP Document Library at www.wfdireland.ie.

APPENDIX F

HISTORIC GEOTECHNICAL INVESTIGATION REPORTS AND LOG DETAILS

SJTE INVESTIGATIONS LTD.
 SOIL INVESTIGATION
 BORING RECORD

 Cort.
 mon라일 Mo,
 Order Mo.

CONTRACT
Report Nict T
15.1.1974.

4, Oin Oin
Femerter

SITE INVESTIGATIONS LTD.
SOIL INVESTIGATKN
BORING RECORD

CONTITHET
Aqpon No
空 Moving Cennmed

Type of Borlent
Oroend inwal
Trater Stred (1)

4. - 4 est

 4, Ble 0.D.
3.4s. (t) ()

- SITE INVESTIGATIONS LTD.
SOLL INVESTIGATION
BORING RECORD
contract xapon nos roved loe
sine Altis

1tpe of Porbs Frownd trint Fater Sinet (1)

C. ${ }^{\text {P. }}$.

Enctict
$31.1 \mathrm{Cl} \mathrm{HOP}_{4}$.

$4.230 \quad 0.0$

nathe

Sorime Cocipitin

Drear Whas

10.14 .1924. 15040

4823
BOREMOLE NO. 8. DIAMETER: 0.816 mCh $\square-$

RESORT 1167 BuO 55

Pre file Esiol -

4823
BOREMOLE NO. 8. DIAMETER: 0.816 mCh $\square-$

RESORT 1167 BuO 55

Pre file Esiol -

4823
BOREMOLE NO. 8. DIAMETER: 0.816 mCh $\square-$

RESORT 1167 BuO 55

Pre file Esiol -

4823
BOREMOLE NO. 8. DIAMETER: 0.816 mCh $\square-$

RESORT 1167 BuO 55

Pre file Esiol -

Overview Map for GSI Report 1167: ESB Marino Power Station ESB Marina Power Station, Cork Harbour, Co. Cork
Points Observed: 25

GSI REPORT 1167

ESB Marino Power Station

ESB Marina Power Station, Cork Harbour, Co. Cork

Borehole List:

Borehole	Name	Depth	DTB	ODMALIN	Easting	Northing	Description
64816	1	28.042		2.99	169351	72111	Cable Percussion (Shell and Auger)
64817	2	15.85		3	169362	72046	Cable Percussion (Shell and Auger)
64818	3	14.021		3.08	169326	72064	Cable Percussion (Shell and Auger)
64819	4	46.634		2.9	169390	72092	Cable Percussion (Shell and Auger)
64820	5	28.956		3.69	169479	72179	Cable Percussion (Shell and Auger)
64821	6	7.01		-. 06	169414	72007	Cable Percussion (Shell and Auger)
64822	7	30.48		3.08	169395	72037	Cable Percussion (Shell and Auger)
64823	8	30.48		3.08	169375	72017	Cable Percussion (Shell and Auger)
64824	9	28.55		3.08	169347	72005	Cable Percussion (Shell and Auger)
64825	10	30.48		3.08	169332	72031	Cable Percussion (Shell and Auger)
64826	11	21.336		2.57	169419	72078	Cable Percussion (Shell and Auger)
64827	12	21.336		2.78	169403	72107	Cable Percussion (Shell and Auger)
64828	13	24.994		2.8	169409	72104	Cable Percussion (Shell and Auger)
64829	14	24.079		2.6	169413	72070	Cable Percussion (Shell and Auger)
64830	15	28.956		3.08	169401	72082	Cable Percussion (Shell and Auger)
97270	1	30.8		1.52			Cable Percussion (Shell and Auger)
97271	2	30.5		1.48			Cable Percussion (Shell and Auger)
97272	3	26		1.37			Cable Percussion (Shell and Auger)
97273	4	27		1.57			Cable Percussion (Shell and Auger)
97274	5	27.3		1.27			Cable Percussion (Shell and Auger)
97275	6	27		1.26			Cable Percussion (Shell and Auger)
97276	7	27		1.62			Cable Percussion (Shell and Auger)
97277	8	29		1.63			Cable Percussion (Shell and Auger)
97278	9	30		1.8			Cable Percussion (Shell and Auger)
97279	10	30		2.03			Cable Percussion (Shell and Auger)

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64816 (Company Name: 1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6481601	0	1.83			Clayey	Fill - Made Ground	Fill - Made Ground
6481602	1.83	3.05			Clayey	Sill - Made Ground	Fill - Made Ground
6481603	3.05	4.27		Grey Brown	Clayey	Silt	
6481604	4.27	5.49	Soft	Grey Brown	Clayey	Clay	Clay
6481605	5.49	6.4		Dark Grey	Clayey	Clay	Clay
6481606	6.4	7.01		Grey	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481607	7.01	7.75		Red	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481608	7.75	7.92		Grey	Fine	Clay And Gravel	Clay And Gravel
6481609	7.92	8.84		Red Brown	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481610	8.84	10.67	Compact	Red Brown	Fine	Gravel And Clay	Gravel And Clay
6481611	10.67	10.97	Compact	Red	Fine	Gravel And Clay	Gravel And Clay
6481612	10.97	11.89	Coarse		Gravelly	Gravel And Clay	Gravel And Clay
6481613	11.89	12.8	Coarse		Gravelly Sandy	Gravel And Clay	Gravel And Clay
6481614	12.8	14.63		Red Brown	Silty Sandy	Silt	Silt
6481615	14.63	17.07		Red Brown	Fine	Gravel And Clay	Gravel And Clay
6481616	17.07	24.99			Fine Silty	Sand And Clay	Sand And Clay
6481617	24.99	28.04			Fine	Gravel And Clay	Gravel And Clay

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64817 (Company Name: 2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6481701	0	3.05			Clayey	Fill - Made Ground	Fill - Made Ground
6481702	3.05	4.57		Brown Grey	Clayey	Clay	Clay
6481703	4.57	7.92		Dark Grey	Clayey Gravelly	Clay	Clay
6481704	7.92	8.23			Clayey	Gravel And Clay	Gravel And Clay
6481705	8.23	8.66		Dark Grey	Fine	Clay And Gravel	Clay And Gravel
6481706	8.66	8.84		Red	Fine	Silt And Clay	Silt And Clay
6481707	8.84	9.88		Dark Grey	Clayey	Gravel	Gravel
6481708	9.88	10.67	Coarse	Red Brown	Clayey	Clay, Sand And Gravel	Clay, Sand And Gravel
6481709	10.67	10.97		Red	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481710	10.97	11.4		Red Brown	Fine Silty	Clay And Gravel	Clay And Gravel
6481711	11.4	14.45		Red	Clayey	Clay, Sand And Gravel	Clay, Sand And Gravel
6481712	14.45	15.85		Red	Very Fine	Sand	Sand

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64818 (Company Name: 3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6481801	0	2.9		Dark Grey	Clayey	Clay And Gravel	Clay And Gravel
6481802	2.9	4.42	Friable	Dark Grey Black	Clayey	Clay	Clay
6481803	4.42	6.4	Friable	Dark Grey	Clayey	Sand And Clay	Sand And Clay
6481804	6.4	8.23		Dark Grey	Fine	Clay And Gravel	Clay And Gravel
6481805	8.23	8.66	Friable	Grey	Clayey	Clay	Clay
6481806	8.66	9.75			Very Clayey	Sand And Gravel	Sand And Gravel
6481807	9.75	11.58	Coarse	Red Brown	Clayey	Sand And Gravel	Sand And Gravel
6481808	11.58	13.72		Red Brown	Fine	Sand And Gravel	Sand And Gravel
6481809	13.72	14.02	Compact		Fine	Sand And Gravel	Sand And Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64819 (Company Name: 4)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6481901	0	4.09			Clayey	Fill - Made Ground	Fill - Made Ground
6481902	4.09	4.27		Clayey	Clay	Clay	
6481903	4.27	6.53	Friable	Grey	Clayey	Silt	Silt
6481904	6.53	7.32		Grey	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481905	7.32	10.97		Red	Clayey	Sand And Gravel	Sand And Gravel
6481906	10.97	15.24		Red Brown	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481907	15.85	25.12		Red	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481908	25.12	25.91		Red Brown	Very Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481909	25.91	28.65		Red Brown	Fine	Clay, Sand And Gravel	Clay, Sand And Gravel
6481910	28.65	29.87		Red	Fine	Sand	Sand
6481911	29.87	32.13		Red	Clayey	Sand And Gravel	Sand And Gravel
6481912	32.13	34.14		Red	Medium	Sand And Gravel	Sand And Gravel
6481913	34.14	37.49		Red	Very Stony	Gravel And Clay	Gravel And Clay
6481914	37.49	44.5		Red	Very Clayey	Sand And Gravel	Sand And Gravel
6481915	44.5	45.72		Red	Medium	Gravel	Gravel
6481916	45.72	46.63		Red	Fine	Sand	Sand

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64820 (Company Name: 5)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482001	0	3.05			Clayey	Fill - Made Ground	Fill - Made Ground
6482002	3.05	4.88		Grey	Silty	Fill - Made Ground	Fill - Made Ground
6482003	4.88	7.75		Grey	Silty	Silt	Silt
6482004	7.75	8.05		Grey	Clayey	Gravel	Gravel
6482005	8.05	12.8	Dense fine	Red	Clayey	Sand And Gravel	Sand And Gravel
6482006	12.8	13.41		Red	Clayey	Sand And Gravel	Sand And Gravel
6482007	13.41	14.94		Red	Medium	Sand	Sand
6482008	14.94	28.96		Red	Fine	Sand And Gravel	Sand And Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64821 (Company Name: 6)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482101	0	1.04		Brown	Silty	Silt	Silt
6482102	1.04	2.57		Dark Grey	Clayey	Silt	Silt
6482103	2.57	2.87		Red Brown	Fine	Sand And Gravel	Sand And Gravel
6482104	2.87	3.48		Grey	Clayey	Gravel And Silt	Gravel And Silt
6482105	3.48	7.01		Red	Stony Clayey	Gravel	Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64822 (Company Name: 7)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482201	0	4.57		Light Brown	Fine Sandy	Fill - Made Ground	Fill - Made Ground
6482202	4.57	9.75	Soft	Dark Grey	Sandy Silty	Silt	Silt
6482203	9.75	30.48	Dense	Red Brown	Silty	Gravel	Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64823 (Company Name: 8)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482301	0	3.66		Dark Brown	Sandy Gravelly	Fill - Made Ground	Fill - Made Ground
6482302	3.66	9.6	Very Soft	Grey	Clayey Silty Sandy	Gravel	Gravel
6482303	9.6	30.48	Medium Dense	Red Brown	Fine to Coarse	Gravel And Cobbles	Gravel And Cobbles

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64824 (Company Name: 9)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482401	0	3.81		Dark Brown	Sandy Clayey	Fill - Made Ground	Fill - Made Ground
6482402	3.81	12.19	Soft	Dark Grey	Clayey Silty Sandy	Gravel And Cobbles	Gravel And Cobbles
6482403	12.19	28.55	Medium Dense	Red Brown	Fine to Coarse	Gravel And Cobbles	Gravel And Cobbles

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64825 (Company Name: 10)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482501	0	2.9	Soft	Dark Brown	Sandy Gravelly Silty	Fill - Made Ground	Fill - Made Ground
6482502	2.9	10.82	Soft	Dark Grey	Silty Sandy Gravelly	Clay	Clay
6482503	10.82	30.48	Medium Dense	Red Brown	Fine to Coarse	Sand And Gravel	Sand And Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64826 (Company Name: 11)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482601	0	1.52	Loose		Clayey Gravelly	Fill - Made Ground	Fill - Made Ground
6482602	1.52	4.88	Loose		Clayey Gravelly	Fill - Made Ground	Fill - Made Ground
6482603	4.88	5.79		Dark Grey	Clayey Silty	Clay	Clay
6482604	5.79	21.34		Red Brown	Fine to Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64827 (Company Name: 12)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482701	0	1.52		Brown	Clayey Gravelly	Clay And Gravel	Clay And Gravel
6482702	1.52	3.05		Black	Clayey	Sand	Sand
6482703	3.05	4.57		Dark Grey	Fine Silty	Silt And Clay	Silt And Clay
6482704	4.57	21.34		Red	Fine to Coarse Sandy	Sand And Cobbles	Sand And Cobbles

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64828 (Company Name: 13)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482801	0	3.96			Silty Sandy	Fill - Made Ground	Fill - Made Ground
6482802	3.96	4.57		Grey	Sandy Silty	Silt And Clay	Silt And Clay
6482803	4.57	5.49		Grey	Fine to Medium	Gravel And Silt	Gravel And Silt
6482804	5.49	7.01		Grey	Organic	Silt And Clay	Silt And Clay
6482805	7.01	9.91			Fine to Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders
6482806	9.91	12.34			Fine to Coarse	Gravel And Cobbles	Gravel And Cobbles
6482807	12.34	20.12			Sand, Gravel And Boulders	Sand, Gravel And Boulders	
6482808	20.12	23.32	Coarse			Gravel And Cobbles	Gravel And Cobbles
6482809	23.32	24.99		Brown	Fine to Coarse	Sand And Cobbles	Sand And Cobbles

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64829 (Company Name: 14)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6482901	0	2.74		Dark Brown	Clayey	Fill - Made Ground	Fill - Made Ground
6482902	2.74	5.18	Very Soft	Grey	Silty Sandy	Silt	Silt
6482903	5.18	5.79	Soft	Grey	Sandy Silty	Silt	Silt
6482904	5.79	6.71			Fine Sandy	Gravel And Silt	Gravel And Silt
6482905	6.71	7.32			Small	Sand And Gravel	Sand And Gravel
6482906	7.32	8.84			Sedium	Sand And Gravel	Sand And Gravel
6482907	8.84	10.06			Gravel And Cobbles	Sravel And Cobbles Boulders	
6482908	10.06	10.67			Sand, Gravel And Sand, Gravel And Boulders		
6482909	10.67	11.58			Sand, Gravel And Boulders		
6482910	11.58	12.19	Coarse		Medium	Medium Gravelly	Sand And Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 64830 (Company Name: 15)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
6483001	0	. 3				Fill - Made Ground	Fill - Made Ground
6483002	. 3	1.83		Dark Brown	Clayey	Fill - Made Ground	Fill - Made Ground
6483003	1.83	4.27			Clayey	Fill - Made Ground	Fill - Made Ground
6483004	4.27	4.57	Very Soft	Grey	Clayey	Silt	Silt
6483005	4.57	6.4	Very Soft	Grey	Silty Sandy	Silt	Silt
6483006	6.4	7.01			Clayey	Gravel And Silt	Gravel And Silt
6483007	7.01	11.89			Medium	Sand And Gravel	Sand And Gravel
6483008	11.89	12.5	Compact		Medium	Gravel And Cobbles	Gravel And Cobbles
6483009	12.5	13.11			Medium	Gravel And Cobbles	Gravel And Cobbles
6483010	13.11	15.24	Compact		Medium	Gravel And Cobbles	Gravel And Cobbles
6483011	15.24	15.85			Medium	Gravel	Gravel
6483012	15.85	16.92			Medium to Coarse	Sand And Gravel	Sand And Gravel
6483013	16.92	17.68	Coarse		Small	Sand And Gravel	Sand And Gravel
6483014	17.68	18.9	Very Compact		Medium	Gravel	Gravel
6483015	18.9	19.51	Very Compact		Medium	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders
6483016	19.51	20.42	Compact		Small	Gravel	Gravel
6483017	20.42	22.86	Compact		Small	Gravel	Gravel
6483018	22.86	23.47			Medium	Gravel	Gravel
6483019	23.47	24.84	Very Compact		Small	Sand And Gravel	Sand And Gravel
6483020	24.84	28.96	Very Compact		Medium Gravelly	Sand And Gravel	Sand And Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97270 (Company Name: 1)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727001	0	.15				Fill - Made Ground	Fill - Made Ground
9727002	.15	2.8			Clayey	Fill - Made Ground	Fill - Made Ground
9727003	2.8	4.9	Soft	Grey	Silty	Clay	
9727004	4.9	5.05	Soft	Grey	Organic	Silt	Silt
9727005	5.05	5.2	Coarse		Very Clayey	Gravel	Gravel
9727006	5.2	5.8	Soft	Grey	Clayey	Silt	Silt
9727007	5.8	7.1	Loose		Slightly Sandy Clayey	Gravel	Gravel
9727008	7.1	8.9	Soft	Black	Organic	Clay	Clay
9727009	8.9	11	Compact		Coarse	Gravel	Gravel
9727010	11	16.9	Compact		Medium	Sand And Gravel	Sand And Gravel
9727011	16.9	20.5		Medium to Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders	
9727012	20.5	30.8	Compact		Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97271 (Company Name: 2)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727101	0	.15			Clayey	Fill - Made Ground	Fill - Made Ground
9727102	.15	2.3			Clayey Gravelly	Fill - Made Ground	Fill - Made Ground
9727103	2.3	3.7	Soft	Brown and Grey	Clayey	Silt	Silt
9727104	3.7	4.15	Soft	Grey	Sandy	Silt	Silt
9727105	4.15	4.3	Soft	Grey	Silty	Clay	Clay
9727106	4.3	5.55	Loose		Sandy	Gravel And Silt	Gravel And Silt
9727107	5.55	6.1	Soft	Grey	Organic	Silt And Clay	Silt And Clay
9727108	6.1	7.7	Compact		Sandy	Gravel	Gravel
9727109	7.7	10.9	Compact		Coarse	Gravel And Cobbles	Gravel And Cobbles
9727110	10.9	16.3	Coarse		Clayey	Sand And Gravel	Sand And Gravel
9727111	16.3	30.5	Compact		Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97272 (Company Name: 3)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727201	0	.15				Fill - Made Ground	Fill - Made Ground
9727202	.15	2				Fill - Made Ground	Fill - Made Ground
9727203	2	2.7	Soft	Grey	Stony	Silt	
9727204	2.7	4		Dark Grey	Organic	Silt	Silt
9727205	4	5.7	Loose		Medium to Coarse	Gravel	Gravel
9727206	5.7	6	Soft	Dark Grey	Organic gravelly	Clay	Clay
9727207	6	6.5			Fine to Medium	Sand And Gravel	Sand And Gravel
9727208	6.5	7.1		Grey	Clayey	Silt	Silt
9727209	7.1	14	Compact		Medium to Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders
9727210	14	18.3	Stiff	Grey		Clay	Clay
9727211	18.3	18.8	Stiff	Grey	Shelly	Clay	Clay
9727212	18.8	26	Compact		Medium to Coarse	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97273 (Company Name: 4)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727301	0	.15				Fill - Made Ground	Fill - Made Ground
9727302	.15	2				Fill - Made Ground	Fill - Made Ground
9727303	2	3.5	Soft	Grey	Clayey	Silt	Silt
9727304	3.5	5	Loose		Clayey	Sand And Gravel	Sand And Gravel
9727305	5	5.8	Soft	Grey	Clayey	Silt	Silt
9727306	5.8	6.2			Medium to Coarse	Sand And Gravel	Sand And Gravel
9727307	6.2	7.15	Soft		Gravelly	Silt	Silt
9727308	7.15	8		Dark Grey	Silty Stony	Clay	Clay
9727309	8	10.35	Compact		Medium to Coarse	Sand, Gravel And Boulders	Sand, Gravel And Boulders
9727310	10.35	15.7			Fine to Medium	Sand	Sand
9727311	15.7	27	Compact		Coarse Sandy	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97274 (Company Name: 5)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727401	0	.15				Fill - Made Ground	Fill - Made Ground
9727402	.15	2			Clayey	Fill - Made Ground	Fill - Made Ground
9727403	2	4		Grey	Organic	Silt	
9727404	4	4.6		Dark Grey	Very Silty	Gravel	Gravel
9727405	4.6	6			Medium to Coarse	Sand And Gravel	Sand And Gravel
9727406	6	6.5	Soft	Grey	Clayey	Silt	Silt
9727407	6.5	13.7	Coarse		Sandy Gravelly	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders
9727408	13.7	17.5	Stiff	Grey Green	Silty Clayey	Silt And Clay	Silt And Clay
9727409	17.5	27.3	Compact		Coarse Sandy Gravelly	Sand And Gravel	Sand And Gravel

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97275 (Company Name: 6)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727501	0	.15				Fill - Made Ground	Fill - Made Ground
9727502	.15	2			Clayey	Sill - Made Ground	Fill - Made Ground
9727503	2	3.15	Soft	Grey Brown	Clayey	Silt	
9727504	3.15	4	Soft	Grey	Very Sandy	Silt	Silt
9727505	4	4.9	Loose		Coarse Sandy	Gravel	Gravel
9727506	4.9	5.5	Soft	Grey	Clayey	Silt	Silt
9727507	5.5	6.5	Compact		Fine Gravelly	Sand And Gravel	Sand And Gravel
9727508	6.5	8	Soft	Grey	Organic	Silt	Silt
9727509	8	12	Compact		Coarse Sandy Gravelly	Gravel	Gravel
9727510	12	13.3	Compact		Very Coarse	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders
9727511	13.3	15	Very Stiff	Brown	Very Stony	Clay, Cobbles And Boulders	Clay, Cobbles And Boulders
9727512	15	15.6			Very Coarse Gravelly	Gravel And Cobbles	Gravel And Cobbles
9727513	15.6	27	Very Compact			Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97276 (Company Name: 7)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727601	0	.15				Fill - Made Ground	Fill - Made Ground
9727602	.15	2.6			Clayey	Fill - Made Ground	Fill - Made Ground
9727603	2.6	4.65	Very Soft	Grey Brown	Organic	Silt And Clay	Silt And Clay
9727604	4.65	5.3	Loose		Coarse Sandy Silty	Silt	Silt
9727605	5.3	6		Grey	Gravelly	Silt	Silt
9727606	6	7	Loose		Fine to Coarse	Sand And Gravel	Sand And Gravel
9727607	7	7.8		Grey	Slightly Sandy Silty	Silt	Silt
9727608	7.8	10.2	Compact		Coarse	Gravel And Cobbles	Gravel And Cobbles
9727609	10.2	11	Coarse		Sandy	Gravel	Gravel
9727610	11	14.65	Compact		Very Coarse	Gravel And Cobbles	Gravel And Cobbles
9727611	14.65	16.4	Stiff	Grey	Clayey	Clay	Clay
9727612	16.4	17.3	Stiff	Grey	Silty Clayey	Clay	Clay
9727613	17.3	18.8	Very Stiff	Light Brown	Silty, Very Stony	Clay, Cobbles And Boulders	Clay, Cobbles And Boulders
9727614	18.8	27	Compact		Very Coarse Sandy	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97277 (Company Name: 8)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727701	0	.15			Clayey	Fill - Made Ground	Fill - Made Ground
9727702	.15	2				Fill - Made Ground	Fill - Made Ground
9727703	2	4.3	Soft	Grey	Clayey	Silt	Silt
9727704	4.3	5.8	Loose		Coarse Silty	Sand And Gravel	Sand And Gravel
9727705	5.8	6.75	Loose		Fine Silty	Sand And Gravel	Sand And Gravel
9727706	6.75	7.4		Grey	Organic	Gravel And Silt	Gravel And Silt
9727707	7.4	14	Compact		Very Coarse Sandy	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders
9727708	14	18.7	Stiff	Grey Green	Clayey Silty	Clay And Silt	Clay And Silt
9727709	18.7	19.05				Fill - Made Ground	Fill - Made Ground
9727710	19.05	19.7	Stiff	Grey	Silty Clayey	Clay	Clay
9727711	19.7	21.6	Stiff	Brown	Silty Clayey	Silt And Clay	Silt And Clay
9727712	21.6	23.7	Stiff	Green	Very Silty	Clay	Clay
9727713	23.7	29	Compact		Very Coarse Sandy	Gravel, Cobbles And Boulders	Gravel, Cobbles And Boulders

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97278 (Company Name: 9)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727801	0	.15			Clayey	Fill - Made Ground	Fill - Made Ground
9727802	.15	2.8			Clayey	Fill - Made Ground	Fill - Made Ground
9727803	2.8	3.45	Soft	Grey	Very Silty	Clay	Clay
9727804	3.45	4.9	Soft	Grey	Silty Stony	Silt And Stones	Silt And Stones
9727805	4.9	5.3	Firm	Grey	Clayey	Silt	Silt
9727806	5.3	7.45	Loose	Gedium to Coarse	Sand And Gravel	Sand And Gravel	
9727807	7.45	8.3	Firm	Grey	Clayey	Silt	

GSI REPORT 1167
ESB Marino Power Station
LAYERS FOR BOREHOLE 97279 (Company Name: 10)

LAYER	TOP	BASE	STRENGTH	COLOUR	MINORLITH	MAJORLITH	INTERPRETATION
9727901	0	.15			Clayey	Fill - Made Ground	Fill - Made Ground
9727902	.15	2.7			Clayey	Fill - Made Ground	Fill - Made Ground
9727903	2.7	4.35	Soft	Grey	Silty	Silt	Silt
9727904	4.35	6	Loose	Grey	Very Sandy	Silt	Silt
9727905	6	6.5	Loose		Medium to Coarse	Gravel	Gravel
9727906	6.5	8.1	Loose		Very Sandy Silty	Gravel	Gravel
9727907	8.1	11.25	Compact		Fine to Coarse	Gravel	Gravel
9727908	11.25	15.6	Compact		Very Coarse Sandy	Gravel And Cobbles	Gravel And Cobbles
9727909	15.6	16	Compact		Coarse Gravelly	Sand And Gravel	Sand And Gravel
9727910	16	30	Compact		Coarse Sandy Gravelly	Gravel And Cobbles	Gravel And Cobbles

Summary of Geotechnical boreholes from Marina Generating Station Report (1974)

ID	$\begin{array}{c}\text { Depth } \\ \text { (mBGL) }\end{array}$	$\left.\begin{array}{c}\text { Geology } \\ \hline \text { Borehole no. 1 } \\ \hline\end{array} \right\rvert\, \begin{array}{c}\text { Rubble sand MADE } \\ \text { GROUND }\end{array}$
Borehole no. 2	$0.05-6.4$	$\begin{array}{c}\text { Dark grey soft greyish } \\ \text { estuarine CLAY and SILT } \\ \text { with shells }\end{array}$
Borehole no. 3	$0-3.05$	$\begin{array}{c}\text { Clayey sand gravel rubble } \\ \text { MADE GROUND }\end{array}$

Verdé Environmental Consultants Ltd | part of the Verdé Environmental Group
$\left.\begin{array}{|l|c|c|}\hline & & \\ \hline & 9.75-30.48 & \begin{array}{c}\text { gravelly SILT alluvium } \\ \text { Reddish-brown silty sand } \\ \text { and coarse GRAVEL with } \\ \text { cobbles }\end{array} \\ \hline \text { Borehole no. 8 } & 0-3.66 & \begin{array}{c}\text { Dark brown sandy and } \\ \text { gravelly MADE GROUND } \\ \text { with black slag clinker }\end{array} \\ \hline \text { Soft grey sandy and } \\ \text { gravelly SILT alluvium } \\ \text { with some shells }\end{array}\right\}$

Verdé Environmental Consultants Ltd \| part of the Verdé Environmental Group

		with clinker ash deposits
	$4.57-21.34$	Fine, medium and coarse reddish brown SAND with GRAVEL and cobbles
Borehole no. 13	0-3.96	Dark brown sandy and gravelly MADE GROUND with some brick rubble
	$3.96-7.01$	Soft grey sandy and gravelly SILT
	7.01-24.99	Reddish-brown clayey sand and coarse GRAVEL with cobbles
Borehole no. 14	$0-2.74$	Dark brown sandy and gravelly MADE GROUND with clinker slag and metal pieces
	2.74-5.79	Soft grey sandy and gravelly SILT
	5.79-24.08	Reddish-brown clayey sand and coarse GRAVEL with cobbles
Borehole no. 15	0-4.27	Dark gravelly sandy MADE GROUND with scrap metal and clinker ash/slag
	4.27-6.4	Soft grey sandy and gravelly SILT
	6.4-28.96	Reddish-brown clayey sand and coarse GRAVEL with cobbles

APPENDIX H

IRISH WATER RISK ASSESSMENT CORRESPONDENCE

0
Verdé

From:

Sent: Wednesday 19 February 2020 12:34
To: (ESB Networks)
Cc: HQDWcompliance ;
Subject: RE: ESB enquiry regarding risk to water supply from cable fluid leaks

Dear

Further to your query (within the attached email), we have examined the locations within your interactive map and cross referenced against the results from our regulatory monitoring programme for Total Polyaromatic Hydrocarbons (Total PAHs) and Benzene, from 2014 to date. Without knowing the exact chemical composition of the oil used to fill ESB cables, these are the closest parameters we can find from our monitoring programme that would be representative of potential oil contamination.

For the relevant supplies within the Greater Dublin Area, we have recorded zero exceedances of the parametric value (i.e. legally allowable limit) for Total PAHs (which is $0.1 \mu \mathrm{~g} / \mathrm{L}$) and Benzene (which is $1 \mu \mathrm{~g} / \mathrm{L})$ within this period. The same is true for the Cork City area.

A summary of these results are collated in the following table

Location Assessed	Number of Samples tested for PAH	Number of exceedances for PAH	Number of Detections* for PAH	Number of Samples tested for Benzene	Number of exceedances for Benzene	Number of Detections* for Benzene
Greater Dublin Area	981	0	15 (Range detected $0.01-$ $0.04 \mu \mathrm{~g} / \mathrm{L})$	980	0	2 (Range detected $0.1-0.4 \mu \mathrm{~g} / \mathrm{L})$
Cork City	61	0	1 $($ Result: $0.02 \mu \mathrm{~g} / \mathrm{L})$	61	0	0

* Detections - where the result was above the limit of detection for the test in question, i.e. the test returned an actual concentration of the analyte

These results (which are from samples taken at the customer tap) would not indicate that leaks from oil filled cables have contaminated the drinking water supply for these areas, or at least to an extent where any contamination arising has resulted in a breach of the parametric value for PAHs and Benzene.

Notwithstanding what these results indicate, oil contamination in drinking water is a serious public health matter, and every effort should be made to ensure the likelihood of oil leaks from ESB cables coming into contact with water pipes is minimised to the lowest possible extent. Whilst our water mains are pressurised, should pressure levels drop for any reason (nearby burst for example),

Verdé
contaminated groundwater could potentially infiltrate into our mains. Benzene in particular could also pose a risk to our PVC and Polyethylene pipes.

I trust this analysis and commentary is sufficient for your risk assessment.

Regards,

Drinking Water Compliance Lead
Environmental Regulation

Uisce Éireann
Teach Colvill, 24-26 Sráid Thalbóid, Balie Átha Cliath 1
Irish Water
Colvill House, 24-26 Talbot Street, Dublin 1, Ireland

Pesticide awareness - the protective foil of a pesticide container can contain enough product to cause a pesticide exceedance along a 30 km stretch of a stream!

